/** * Builds a PTA from the supplied arguments using two different methods. If any of them throws, * checks that another one throws too and then rethrows the exception. * * @param arrayPlusStrings allowed sequences * @param arrayMinusStrings sequences ending at a reject state * @param expectedPTA a textual representation of a PTA which should be built. * @param expectMaxAutomataToBeTheSameAsPTA whether we expect augmentation of a maximal automaton * to yield the same result as that of a normal PTA. */ private void checkPTAconstruction( String[][] arrayPlusStrings, String[][] arrayMinusStrings, String expectedPTA, boolean expectMaxAutomataToBeTheSameAsPTA) { Configuration conf = mainConfiguration.copy(); Set<List<Label>> plusStrings = buildSet(arrayPlusStrings, conf, converter), minusStrings = buildSet(arrayMinusStrings, conf, converter); LearnerGraph actualA = null, actualC = null, actualD = null, actualE = null, actualF = null; IllegalArgumentException eA = null, eC = null, eD = null, eE = null, eF = null; try { actualA = new LearnerGraph( Test_Orig_RPNIBlueFringeLearner.createAugmentedPTA(plusStrings, minusStrings), conf); } catch (IllegalArgumentException e) { // ignore this - it might be expected. eA = e; } try { Configuration config = mainConfiguration.copy(); RPNIUniversalLearner l = new RPNIUniversalLearner( null, new LearnerEvaluationConfiguration(null, null, config, null, null)); config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE); l.init(plusStrings, minusStrings); actualC = l.getTentativeAutomaton(); } catch (IllegalArgumentException e) { // ignore this - it might be expected. eC = e; } try { Configuration config = mainConfiguration.copy(); RPNIUniversalLearner l = new RPNIUniversalLearner( null, new LearnerEvaluationConfiguration(null, null, config, null, null)); config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE); PTASequenceEngine engine = buildPTA(plusStrings, minusStrings); checkPTAConsistency(engine, plusStrings, true); if (engine.numberOfLeafNodes() > 0) checkPTAConsistency(engine, minusStrings, false); l.init(engine, 0, 0); actualD = l.getTentativeAutomaton(); } catch (IllegalArgumentException e) { // ignore this - it might be expected. eD = e; } try { Configuration config = mainConfiguration.copy(); RPNIUniversalLearner l = new RPNIUniversalLearner( null, new LearnerEvaluationConfiguration(null, null, config, null, null)); config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE); l.init(buildPTA(plusStrings, buildSet(new String[][] {}, config, converter)), 0, 0); for (List<Label> seq : minusStrings) { Set<List<Label>> negativeSeq = new HashSet<List<Label>>(); negativeSeq.add(seq); l.getTentativeAutomaton() .paths .augmentPTA(buildPTA(buildSet(new String[][] {}, config, converter), negativeSeq)); } actualE = l.getTentativeAutomaton(); } catch (IllegalArgumentException e) { // ignore this - it might be expected. eE = e; } try { Configuration config = mainConfiguration.copy(); RPNIUniversalLearner l = new RPNIUniversalLearner( null, new LearnerEvaluationConfiguration(null, null, config, null, null)); config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE); l.getTentativeAutomaton().initPTA(); l.getTentativeAutomaton().paths.augmentPTA(minusStrings, false, true); l.getTentativeAutomaton().paths.augmentPTA(plusStrings, true, true); actualF = l.getTentativeAutomaton(); } catch (IllegalArgumentException e) { // ignore this - it might be expected. eF = e; } if (eA != null) { Assert.assertNotNull(eC); Assert.assertNotNull(eD); Assert.assertNotNull(eE); if (expectMaxAutomataToBeTheSameAsPTA) Assert.assertNotNull(eF); throw eA; } Assert.assertNull(eA); Assert.assertNull(eC); Assert.assertNull(eD); Assert.assertNull(eE); if (expectMaxAutomataToBeTheSameAsPTA) Assert.assertNull(eF); Configuration config = mainConfiguration.copy(); config.setAllowedToCloneNonCmpVertex(true); checkM(expectedPTA, actualA, config, converter); checkM(expectedPTA, actualC, config, converter); checkDepthLabelling(actualC); // Visualiser.updateFrame(actualE,FsmParser.buildGraph(expectedPTA,"expected // graph"));Visualiser.waitForKey(); checkM(expectedPTA, actualD, config, converter); checkDepthLabelling(actualD); checkM(expectedPTA, actualE, config, converter); checkDepthLabelling(actualE); if (expectMaxAutomataToBeTheSameAsPTA) checkM(expectedPTA, actualF, config, converter); checkDepthLabelling(actualF); }
private void checkEmptyPTA( String[][] arrayPlusStrings, String[][] arrayMinusStrings, boolean expectMaxAutomataToBeTheSameAsPTA) { Configuration conf = mainConfiguration.copy(); Set<List<Label>> plusStrings = buildSet(arrayPlusStrings, conf, converter), minusStrings = buildSet(arrayMinusStrings, conf, converter); DirectedSparseGraph actualA = null, actualC = null, actualD = null, actualE = null, actualF = null; IllegalArgumentException eA = null, eC = null, eD = null, eE = null, eF = null; try { actualA = Test_Orig_RPNIBlueFringeLearner.createAugmentedPTA(plusStrings, minusStrings); } catch (IllegalArgumentException e) { // ignore this - it might be expected. eA = e; } try { Configuration config = mainConfiguration.copy(); RPNIUniversalLearner l = new RPNIUniversalLearner( null, new LearnerEvaluationConfiguration(null, null, config, null, null)); config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE); l.init(plusStrings, minusStrings); actualC = l.getTentativeAutomaton().pathroutines.getGraph(); } catch (IllegalArgumentException e) { // ignore this - it might be expected. eC = e; } try { Configuration config = mainConfiguration.copy(); RPNIUniversalLearner l = new RPNIUniversalLearner( null, new LearnerEvaluationConfiguration(null, null, config, null, null)); config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE); PTASequenceEngine engine = buildPTA(plusStrings, minusStrings); checkPTAConsistency(engine, plusStrings, true); if (engine.numberOfLeafNodes() > 0) checkPTAConsistency(engine, minusStrings, false); l.init(engine, 0, 0); actualD = l.getTentativeAutomaton().pathroutines.getGraph(); } catch (IllegalArgumentException e) { // ignore this - it might be expected. eD = e; } try { Configuration config = mainConfiguration.copy(); RPNIUniversalLearner l = new RPNIUniversalLearner( null, new LearnerEvaluationConfiguration(null, null, config, null, null)); config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE); l.init(buildPTA(plusStrings, buildSet(new String[][] {}, config, converter)), 0, 0); for (List<Label> seq : minusStrings) { Set<List<Label>> negativeSeq = new HashSet<List<Label>>(); negativeSeq.add(seq); l.getTentativeAutomaton() .paths .augmentPTA(buildPTA(buildSet(new String[][] {}, config, converter), negativeSeq)); } actualE = l.getTentativeAutomaton().pathroutines.getGraph(); } catch (IllegalArgumentException e) { // ignore this - it might be expected. eE = e; } try { Configuration config = mainConfiguration.copy(); RPNIUniversalLearner l = new RPNIUniversalLearner( null, new LearnerEvaluationConfiguration(null, null, config, null, null)); config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE); l.getTentativeAutomaton().initPTA(); l.getTentativeAutomaton().paths.augmentPTA(minusStrings, false, true); l.getTentativeAutomaton().paths.augmentPTA(plusStrings, true, true); actualF = l.getTentativeAutomaton().pathroutines.getGraph(); } catch (IllegalArgumentException e) { // ignore this - it might be expected. eF = e; } if (eA != null) { // an exception has been thrown, hence verify that all way of PTA construction // have thrown too. Assert.assertNotNull(eC); Assert.assertNotNull(eD); Assert.assertNotNull(eE); if (expectMaxAutomataToBeTheSameAsPTA) Assert.assertNotNull(eF); throw eA; } Assert.assertNull(eA); Assert.assertNull(eC); Assert.assertNull(eD); Assert.assertNull(eE); if (expectMaxAutomataToBeTheSameAsPTA) Assert.assertNull(eF); Assert.assertEquals(1, actualA.getVertices().size()); Assert.assertEquals( true, DeterministicDirectedSparseGraph.isAccept( ((Vertex) actualA.getVertices().iterator().next()))); Assert.assertEquals(0, actualA.getEdges().size()); Assert.assertEquals(1, actualC.getVertices().size()); Assert.assertEquals( true, DeterministicDirectedSparseGraph.isAccept( ((Vertex) actualC.getVertices().iterator().next()))); Assert.assertEquals(0, ((CmpVertex) (actualC.getVertices().iterator().next())).getDepth()); Assert.assertEquals(0, actualC.getEdges().size()); Assert.assertEquals(1, actualD.getVertices().size()); Assert.assertEquals( true, DeterministicDirectedSparseGraph.isAccept( ((Vertex) actualD.getVertices().iterator().next()))); Assert.assertEquals(0, ((CmpVertex) (actualD.getVertices().iterator().next())).getDepth()); Assert.assertEquals(0, actualD.getEdges().size()); Assert.assertEquals(1, actualE.getVertices().size()); Assert.assertEquals( true, DeterministicDirectedSparseGraph.isAccept( ((Vertex) actualE.getVertices().iterator().next()))); Assert.assertEquals(0, ((CmpVertex) (actualE.getVertices().iterator().next())).getDepth()); Assert.assertEquals(0, actualE.getEdges().size()); if (expectMaxAutomataToBeTheSameAsPTA) { Assert.assertEquals(1, actualF.getVertices().size()); Assert.assertEquals( true, DeterministicDirectedSparseGraph.isAccept( ((Vertex) actualF.getVertices().iterator().next()))); Assert.assertEquals(0, ((CmpVertex) (actualF.getVertices().iterator().next())).getDepth()); Assert.assertEquals(0, actualF.getEdges().size()); } }