protected void assertCDF(
     final double[] p, final double[] x, final ProbabilityDistribution<Double> dist) {
   assertCDFWithNull(dist);
   for (int i = 0; i < p.length; i++) {
     assertEquals(dist.getCDF(x[i]), p[i], EPS);
   }
 }
 protected void assertCDFWithNull(final ProbabilityDistribution<Double> dist) {
   try {
     dist.getCDF(null);
     Assert.fail();
   } catch (final IllegalArgumentException e) {
     // Expected
   }
 }
 @Test
 public void test() {
   double x;
   final double eps = 1e-5;
   for (int i = 0; i < 100; i++) {
     x = RANDOM.nextDouble();
     assertEquals(x, F.evaluate(T.getCDF(x)), eps);
   }
 }
 protected void assertInverseCDF(final double[] x, final ProbabilityDistribution<Double> dist) {
   assertInverseCDFWithNull(dist);
   for (final double d : x) {
     assertEquals(dist.getInverseCDF(dist.getCDF(d)), d, EPS);
   }
   try {
     dist.getInverseCDF(3.4);
     Assert.fail();
   } catch (final IllegalArgumentException e) {
     // Expected
   }
   try {
     dist.getInverseCDF(-0.2);
     Assert.fail();
   } catch (final IllegalArgumentException e) {
     // Expected
   }
 }
 /**
  * @param x The parameters for the function, $(x, y, \rho$, with $-1 \geq \rho \geq 1$, not null
  * @return The cdf
  */
 @Override
 public double getCDF(final double[] x) {
   Validate.notNull(x);
   Validate.isTrue(x.length == 3, "Need a, b and rho values");
   Validate.isTrue(x[2] >= -1 && x[2] <= 1, "Correlation must be >= -1 and <= 1");
   final double a = x[0];
   double b = x[1];
   final double rho = x[2];
   if (a == Double.POSITIVE_INFINITY || b == Double.POSITIVE_INFINITY) {
     return 1;
   }
   if (a == Double.NEGATIVE_INFINITY || b == Double.NEGATIVE_INFINITY) {
     return 0;
   }
   final double sumSq = (a * a + b * b) / 2.;
   double rho1, rho2, rho3, ab, absDiff, h5, c, d, mult = 0, rho3Sq, eab, e, result;
   if (Math.abs(rho) >= 0.7) {
     rho1 = 1 - rho * rho;
     rho2 = Math.sqrt(rho1);
     if (rho < 0) {
       b *= -1;
     }
     ab = a * b;
     eab = Math.exp(-ab / 2.);
     if (Math.abs(rho) < 1) {
       absDiff = Math.abs(a - b);
       h5 = absDiff * absDiff / 2.;
       absDiff = absDiff / rho2;
       c = 0.5 - ab / 8.;
       d = 3. - 2. * c * h5;
       mult =
           0.13298076 * absDiff * d * (1 - NORMAL.getCDF(absDiff))
               - Math.exp(-h5 / rho1) * (d + c * rho1) * 0.053051647;
       for (int i = 0; i < 5; i++) {
         rho3 = rho2 * X[i];
         rho3Sq = rho3 * rho3;
         rho1 = Math.sqrt(1 - rho3Sq);
         if (eab == 0) {
           e = 0;
         } else {
           e = Math.exp(-ab / (1 + rho1)) / rho1 / eab;
         }
         mult = mult - Y[i] * Math.exp(-h5 / rho3Sq) * (e - 1 - c * rho3Sq);
       }
     }
     final double corr = Double.isNaN(mult) ? 0. : mult * rho2 * eab;
     result = corr + NORMAL.getCDF(Math.min(a, b));
     if (rho < 0) {
       result = NORMAL.getCDF(a) - result;
     }
     return result;
   }
   ab = a * b;
   if (rho != 0) {
     for (int i = 0; i < 5; i++) {
       rho3 = rho * X[i];
       rho1 = 1 - rho3 * rho3;
       mult = mult + Y[i] * Math.exp((rho3 * ab - sumSq) / rho1) / Math.sqrt(rho1);
     }
   }
   final double corr = Double.isNaN(mult) ? 0. : rho * mult;
   return NORMAL.getCDF(a) * NORMAL.getCDF(b) + corr;
 }