/** * Determine the fitness of the given Chromosome instance. The higher the return value, the more * fit the instance. This method should always return the same fitness value for two equivalent * Chromosome instances. * * @param a_subject the Chromosome instance to evaluate * @return positive double reflecting the fitness rating of the given Chromosome * @since 2.0 (until 1.1: return type int) * @author Neil Rotstan, Klaus Meffert, John Serri */ public double evaluate(IChromosome a_subject) { int i = 0, j, k; for (j = 0; j < EvolvingSubsumptionForRobocode.numberOfEvents; j++) { eventPriority[j] = ((Integer) a_subject.getGene(i++).getAllele()).intValue(); } for (j = 0; j < EvolvingSubsumptionForRobocode.numberOfBehaviours; j++) { behaviourOverwrite[j] = ((Integer) a_subject.getGene(i++).getAllele()).intValue() > 50; } for (j = 0; j < EvolvingSubsumptionForRobocode.numberOfBehaviours; j++) { for (k = 0; k < EvolvingSubsumptionForRobocode.behaviourSize; k++) { behaviourActions[j][k] = ((Integer) a_subject.getGene(i++).getAllele()).intValue(); } } double tempFitness; double fitness = 0; for (j = 0; j < otherRobots.length; j++) { RobotSpecification[] tempRobots = new RobotSpecification[2]; tempRobots[0] = evolvable; tempRobots[1] = otherRobots[j]; battleSpecs = new BattleSpecification(1, new BattlefieldSpecification(800, 600), tempRobots); tempFitness = 0; System.out.println("Testing against " + otherRobots[j].getName() + "..."); for (i = 0; i < EvolvingSubsumptionForRobocode.numberOfBattles; i++) { engine.runBattle(battleSpecs, true); tempFitness += battleObserver.getScoreRobot() / 500; } tempFitness /= EvolvingSubsumptionForRobocode.numberOfBattles; fitness += tempFitness; } fitness /= otherRobots.length; return Math.min(1.0d, fitness); }
/** * Executes the genetic algorithm to determine the minimum number of items necessary to make up * the given target volume. The solution will then be written to the console. * * @param a_knapsackVolume the target volume for which this method is attempting to produce the * optimal list of items * @throws Exception * @author Klaus Meffert * @since 2.3 */ public static void findItemsForVolume(double a_knapsackVolume) throws Exception { // Start with a DefaultConfiguration, which comes setup with the // most common settings. // ------------------------------------------------------------- Configuration conf = new DefaultConfiguration(); conf.setPreservFittestIndividual(true); // Set the fitness function we want to use. We construct it with // the target volume passed in to this method. // --------------------------------------------------------- FitnessFunction myFunc = new KnapsackFitnessFunction(a_knapsackVolume); conf.setFitnessFunction(myFunc); // Now we need to tell the Configuration object how we want our // Chromosomes to be setup. We do that by actually creating a // sample Chromosome and then setting it on the Configuration // object. As mentioned earlier, we want our Chromosomes to each // have as many genes as there are different items available. We want the // values (alleles) of those genes to be integers, which represent // how many items of that type we have. We therefore use the // IntegerGene class to represent each of the genes. That class // also lets us specify a lower and upper bound, which we set // to senseful values (i.e. maximum possible) for each item type. // -------------------------------------------------------------- Gene[] sampleGenes = new Gene[itemVolumes.length]; for (int i = 0; i < itemVolumes.length; i++) { sampleGenes[i] = new IntegerGene(conf, 0, (int) Math.ceil(a_knapsackVolume / itemVolumes[i])); } IChromosome sampleChromosome = new Chromosome(conf, sampleGenes); conf.setSampleChromosome(sampleChromosome); // Finally, we need to tell the Configuration object how many // Chromosomes we want in our population. The more Chromosomes, // the larger number of potential solutions (which is good for // finding the answer), but the longer it will take to evolve // the population (which could be seen as bad). // ------------------------------------------------------------ conf.setPopulationSize(50); // Create random initial population of Chromosomes. // Here we try to read in a previous run via XMLManager.readFile(..) // for demonstration purpose! // ----------------------------------------------------------------- Genotype population; try { Document doc = XMLManager.readFile(new File("knapsackJGAP.xml")); population = XMLManager.getGenotypeFromDocument(conf, doc); } catch (FileNotFoundException fex) { population = Genotype.randomInitialGenotype(conf); } population = Genotype.randomInitialGenotype(conf); // Evolve the population. Since we don't know what the best answer // is going to be, we just evolve the max number of times. // --------------------------------------------------------------- for (int i = 0; i < MAX_ALLOWED_EVOLUTIONS; i++) { population.evolve(); } // Save progress to file. A new run of this example will then be able to // resume where it stopped before! // --------------------------------------------------------------------- // represent Genotype as tree with elements Chromomes and Genes // ------------------------------------------------------------ DataTreeBuilder builder = DataTreeBuilder.getInstance(); IDataCreators doc2 = builder.representGenotypeAsDocument(population); // create XML document from generated tree // --------------------------------------- XMLDocumentBuilder docbuilder = new XMLDocumentBuilder(); Document xmlDoc = (Document) docbuilder.buildDocument(doc2); XMLManager.writeFile(xmlDoc, new File("knapsackJGAP.xml")); // Display the best solution we found. // ----------------------------------- IChromosome bestSolutionSoFar = population.getFittestChromosome(); System.out.println( "The best solution has a fitness value of " + bestSolutionSoFar.getFitnessValue()); System.out.println("It contained the following: "); int count; double totalVolume = 0.0d; for (int i = 0; i < bestSolutionSoFar.size(); i++) { count = ((Integer) bestSolutionSoFar.getGene(i).getAllele()).intValue(); if (count > 0) { System.out.println("\t " + count + " x " + itemNames[i]); totalVolume += itemVolumes[i] * count; } } System.out.println("\nFor a total volume of " + totalVolume + " ccm"); System.out.println("Expected volume was " + a_knapsackVolume + " ccm"); System.out.println("Volume difference is " + Math.abs(totalVolume - a_knapsackVolume) + " ccm"); }
/** * Retrieves the number of coins represented by the given potential solution at the given gene * position. * * @param a_potentialSolution the potential solution to evaluate * @param a_position the gene position to evaluate * @return the number of coins represented by the potential solution at the given gene position * @author Neil Rotstan * @since 1.0 */ public static int getNumberOfCoinsAtGene(IChromosome a_potentialSolution, int a_position) { Integer numCoins = (Integer) a_potentialSolution.getGene(a_position).getAllele(); return numCoins.intValue(); }