コード例 #1
0
  /**
   * Returns a textual description of this classifier.
   *
   * @return a textual description of this classifier.
   */
  @Override
  public String toString() {

    if (m_probOfClass == null) {
      return "NaiveBayesMultinomialText: No model built yet.\n";
    }

    StringBuffer result = new StringBuffer();

    // build a master dictionary over all classes
    HashSet<String> master = new HashSet<String>();
    for (int i = 0; i < m_data.numClasses(); i++) {
      LinkedHashMap<String, Count> classDict = m_probOfWordGivenClass.get(i);

      for (String key : classDict.keySet()) {
        master.add(key);
      }
    }

    result.append("Dictionary size: " + master.size()).append("\n\n");

    result.append("The independent frequency of a class\n");
    result.append("--------------------------------------\n");

    for (int i = 0; i < m_data.numClasses(); i++) {
      result
          .append(m_data.classAttribute().value(i))
          .append("\t")
          .append(Double.toString(m_probOfClass[i]))
          .append("\n");
    }

    result.append("\nThe frequency of a word given the class\n");
    result.append("-----------------------------------------\n");

    for (int i = 0; i < m_data.numClasses(); i++) {
      result.append(Utils.padLeft(m_data.classAttribute().value(i), 11)).append("\t");
    }

    result.append("\n");

    Iterator<String> masterIter = master.iterator();
    while (masterIter.hasNext()) {
      String word = masterIter.next();

      for (int i = 0; i < m_data.numClasses(); i++) {
        LinkedHashMap<String, Count> classDict = m_probOfWordGivenClass.get(i);
        Count c = classDict.get(word);
        if (c == null) {
          result.append("<laplace=1>\t");
        } else {
          result.append(Utils.padLeft(Double.toString(c.m_count), 11)).append("\t");
        }
      }
      result.append(word);
      result.append("\n");
    }

    return result.toString();
  }
コード例 #2
0
ファイル: Logistic.java プロジェクト: Faelg5/weka
  /**
   * Gets a string describing the classifier.
   *
   * @return a string describing the classifer built.
   */
  @Override
  public String toString() {
    StringBuffer temp = new StringBuffer();

    String result = "";
    temp.append("Logistic Regression with ridge parameter of " + m_Ridge);
    if (m_Par == null) {
      return result + ": No model built yet.";
    }

    // find longest attribute name
    int attLength = 0;
    for (int i = 0; i < m_structure.numAttributes(); i++) {
      if (i != m_structure.classIndex() && m_structure.attribute(i).name().length() > attLength) {
        attLength = m_structure.attribute(i).name().length();
      }
    }

    if ("Intercept".length() > attLength) {
      attLength = "Intercept".length();
    }

    if ("Variable".length() > attLength) {
      attLength = "Variable".length();
    }
    attLength += 2;

    int colWidth = 0;
    // check length of class names
    for (int i = 0; i < m_structure.classAttribute().numValues() - 1; i++) {
      if (m_structure.classAttribute().value(i).length() > colWidth) {
        colWidth = m_structure.classAttribute().value(i).length();
      }
    }

    // check against coefficients and odds ratios
    for (int j = 1; j <= m_NumPredictors; j++) {
      for (int k = 0; k < m_NumClasses - 1; k++) {
        if (Utils.doubleToString(m_Par[j][k], 12, 4).trim().length() > colWidth) {
          colWidth = Utils.doubleToString(m_Par[j][k], 12, 4).trim().length();
        }
        double ORc = Math.exp(m_Par[j][k]);
        String t = " " + ((ORc > 1e10) ? "" + ORc : Utils.doubleToString(ORc, 12, 4));
        if (t.trim().length() > colWidth) {
          colWidth = t.trim().length();
        }
      }
    }

    if ("Class".length() > colWidth) {
      colWidth = "Class".length();
    }
    colWidth += 2;

    temp.append("\nCoefficients...\n");
    temp.append(Utils.padLeft(" ", attLength) + Utils.padLeft("Class", colWidth) + "\n");
    temp.append(Utils.padRight("Variable", attLength));

    for (int i = 0; i < m_NumClasses - 1; i++) {
      String className = m_structure.classAttribute().value(i);
      temp.append(Utils.padLeft(className, colWidth));
    }
    temp.append("\n");
    int separatorL = attLength + ((m_NumClasses - 1) * colWidth);
    for (int i = 0; i < separatorL; i++) {
      temp.append("=");
    }
    temp.append("\n");

    int j = 1;
    for (int i = 0; i < m_structure.numAttributes(); i++) {
      if (i != m_structure.classIndex()) {
        temp.append(Utils.padRight(m_structure.attribute(i).name(), attLength));
        for (int k = 0; k < m_NumClasses - 1; k++) {
          temp.append(Utils.padLeft(Utils.doubleToString(m_Par[j][k], 12, 4).trim(), colWidth));
        }
        temp.append("\n");
        j++;
      }
    }

    temp.append(Utils.padRight("Intercept", attLength));
    for (int k = 0; k < m_NumClasses - 1; k++) {
      temp.append(Utils.padLeft(Utils.doubleToString(m_Par[0][k], 10, 4).trim(), colWidth));
    }
    temp.append("\n");

    temp.append("\n\nOdds Ratios...\n");
    temp.append(Utils.padLeft(" ", attLength) + Utils.padLeft("Class", colWidth) + "\n");
    temp.append(Utils.padRight("Variable", attLength));

    for (int i = 0; i < m_NumClasses - 1; i++) {
      String className = m_structure.classAttribute().value(i);
      temp.append(Utils.padLeft(className, colWidth));
    }
    temp.append("\n");
    for (int i = 0; i < separatorL; i++) {
      temp.append("=");
    }
    temp.append("\n");

    j = 1;
    for (int i = 0; i < m_structure.numAttributes(); i++) {
      if (i != m_structure.classIndex()) {
        temp.append(Utils.padRight(m_structure.attribute(i).name(), attLength));
        for (int k = 0; k < m_NumClasses - 1; k++) {
          double ORc = Math.exp(m_Par[j][k]);
          String ORs = " " + ((ORc > 1e10) ? "" + ORc : Utils.doubleToString(ORc, 12, 4));
          temp.append(Utils.padLeft(ORs.trim(), colWidth));
        }
        temp.append("\n");
        j++;
      }
    }

    return temp.toString();
  }