/** * wrap up various variables to save memeory and do some housekeeping after optimization has * finished. * * @throws Exception if something goes wrong */ protected void wrapUp() throws Exception { m_target = null; m_nEvals = m_kernel.numEvals(); m_nCacheHits = m_kernel.numCacheHits(); if ((m_SVM.getKernel() instanceof PolyKernel) && ((PolyKernel) m_SVM.getKernel()).getExponent() == 1.0) { // convert alpha's to weights double[] weights = new double[m_data.numAttributes()]; for (int k = m_supportVectors.getNext(-1); k != -1; k = m_supportVectors.getNext(k)) { for (int j = 0; j < weights.length; j++) { if (j != m_classIndex) { weights[j] += (m_alpha[k] - m_alphaStar[k]) * m_data.instance(k).value(j); } } } m_weights = weights; // release memory m_alpha = null; m_alphaStar = null; m_kernel = null; } m_bModelBuilt = true; }
/** * initializes the algorithm * * @param data the data to work with * @throws Exception if m_SVM is null */ protected void init(Instances data) throws Exception { if (m_SVM == null) { throw new Exception("SVM not initialized in optimizer. Use RegOptimizer.setSVMReg()"); } m_C = m_SVM.getC(); m_data = data; m_classIndex = data.classIndex(); m_nInstances = data.numInstances(); // Initialize kernel m_kernel = Kernel.makeCopy(m_SVM.getKernel()); m_kernel.buildKernel(data); // init m_target m_target = new double[m_nInstances]; for (int i = 0; i < m_nInstances; i++) { m_target[i] = data.instance(i).classValue(); } m_random = new Random(m_nSeed); // initialize alpha and alpha* array to all zero m_alpha = new double[m_target.length]; m_alphaStar = new double[m_target.length]; m_supportVectors = new SMOset(m_nInstances); m_b = 0.0; m_nEvals = 0; m_nCacheHits = -1; }
/** * SVMOutput of an instance in the training set, m_data This uses the cache, unlike * SVMOutput(Instance) * * @param index index of the training instance in m_data * @return the SVM output * @throws Exception if something goes wrong */ protected double SVMOutput(int index) throws Exception { double result = -m_b; for (int i = m_supportVectors.getNext(-1); i != -1; i = m_supportVectors.getNext(i)) { result += (m_alpha[i] - m_alphaStar[i]) * m_kernel.eval(index, i, m_data.instance(index)); } return result; }
/** * Compute the value of the objective function. * * @return the score * @throws Exception if something goes wrong */ protected double getScore() throws Exception { double res = 0; double t = 0, t2 = 0; double sumAlpha = 0.0; for (int i = 0; i < m_nInstances; i++) { sumAlpha += (m_alpha[i] - m_alphaStar[i]); for (int j = 0; j < m_nInstances; j++) { t += (m_alpha[i] - m_alphaStar[i]) * (m_alpha[j] - m_alphaStar[j]) * m_kernel.eval(i, j, m_data.instance(i)); } // switch(m_nLossType) { // case L1: // t2 += m_data.instance(i).classValue() * (m_alpha[i] - m_alpha_[i]); // break; // case L2: // t2 += m_data.instance(i).classValue() * (m_alpha[i] - m_alpha_[i]) - (0.5/m_SVM.getC()) // * (m_alpha[i]*m_alpha[i] + m_alpha_[i]*m_alpha_[i]); // break; // case HUBER: // t2 += m_data.instance(i).classValue() * (m_alpha[i] - m_alpha_[i]) - // (0.5*m_SVM.getEpsilon()/m_SVM.getC()) * (m_alpha[i]*m_alpha[i] + m_alpha_[i]*m_alpha_[i]); // break; // case EPSILON: // t2 += m_data.instance(i).classValue() * (m_alpha[i] - m_alphaStar[i]) - m_epsilon * // (m_alpha[i] + m_alphaStar[i]); t2 += m_target[i] * (m_alpha[i] - m_alphaStar[i]) - m_epsilon * (m_alpha[i] + m_alphaStar[i]); // break; // } } res += -0.5 * t + t2; return res; }
/** * @param inst * @return * @throws Exception */ public double SVMOutput(Instance inst) throws Exception { double result = -m_b; // Is the machine linear? if (m_weights != null) { // Is weight vector stored in sparse format? for (int i = 0; i < inst.numValues(); i++) { if (inst.index(i) != m_classIndex) { result += m_weights[inst.index(i)] * inst.valueSparse(i); } } } else { for (int i = m_supportVectors.getNext(-1); i != -1; i = m_supportVectors.getNext(i)) { result += (m_alpha[i] - m_alphaStar[i]) * m_kernel.eval(-1, i, inst); } } return result; }