コード例 #1
0
ファイル: DecisionTable.java プロジェクト: alishakiba/jDenetX
  /**
   * Returns an enumeration describing the available options.
   *
   * @return an enumeration of all the available options.
   */
  public Enumeration listOptions() {

    Vector newVector = new Vector(7);

    newVector.addElement(
        new Option(
            "\tFull class name of search method, followed\n"
                + "\tby its options.\n"
                + "\teg: \"weka.attributeSelection.BestFirst -D 1\"\n"
                + "\t(default weka.attributeSelection.BestFirst)",
            "S",
            1,
            "-S <search method specification>"));

    newVector.addElement(
        new Option(
            "\tUse cross validation to evaluate features.\n"
                + "\tUse number of folds = 1 for leave one out CV.\n"
                + "\t(Default = leave one out CV)",
            "X",
            1,
            "-X <number of folds>"));

    newVector.addElement(
        new Option(
            "\tPerformance evaluation measure to use for selecting attributes.\n"
                + "\t(Default = accuracy for discrete class and rmse for numeric class)",
            "E",
            1,
            "-E <acc | rmse | mae | auc>"));

    newVector.addElement(
        new Option("\tUse nearest neighbour instead of global table majority.", "I", 0, "-I"));

    newVector.addElement(new Option("\tDisplay decision table rules.\n", "R", 0, "-R"));

    newVector.addElement(
        new Option(
            "",
            "",
            0,
            "\nOptions specific to search method " + m_search.getClass().getName() + ":"));
    Enumeration enu = ((OptionHandler) m_search).listOptions();
    while (enu.hasMoreElements()) {
      newVector.addElement(enu.nextElement());
    }
    return newVector.elements();
  }
コード例 #2
0
ファイル: Decorate.java プロジェクト: paolopavan/cfr
  /**
   * Returns an enumeration describing the available options
   *
   * @return an enumeration of all the available options
   */
  public Enumeration listOptions() {
    Vector newVector = new Vector(8);

    newVector.addElement(
        new Option("\tDesired size of ensemble.\n" + "\t(default 10)", "E", 1, "-E"));
    newVector.addElement(
        new Option(
            "\tFactor that determines number of artificial examples to generate.\n"
                + "\tSpecified proportional to training set size.\n"
                + "\t(default 1.0)",
            "R",
            1,
            "-R"));

    Enumeration enu = super.listOptions();
    while (enu.hasMoreElements()) {
      newVector.addElement(enu.nextElement());
    }
    return newVector.elements();
  }
コード例 #3
0
  /**
   * Gets the subset of instances that apply to a particluar branch of the split. If the branch
   * index is -1, the subset will consist of those instances that don't apply to any branch.
   *
   * @param branch the index of the branch
   * @param sourceInstances the instances from which to find the subset
   * @return the set of instances that apply
   */
  public ReferenceInstances instancesDownBranch(int branch, Instances instances) {

    ReferenceInstances filteredInstances = new ReferenceInstances(instances, 1);
    if (branch == -1) {
      for (Enumeration e = instances.enumerateInstances(); e.hasMoreElements(); ) {
        Instance inst = (Instance) e.nextElement();
        if (inst.isMissing(attIndex)) filteredInstances.addReference(inst);
      }
    } else if (branch == 0) {
      for (Enumeration e = instances.enumerateInstances(); e.hasMoreElements(); ) {
        Instance inst = (Instance) e.nextElement();
        if (!inst.isMissing(attIndex) && inst.value(attIndex) < splitPoint)
          filteredInstances.addReference(inst);
      }
    } else {
      for (Enumeration e = instances.enumerateInstances(); e.hasMoreElements(); ) {
        Instance inst = (Instance) e.nextElement();
        if (!inst.isMissing(attIndex) && inst.value(attIndex) >= splitPoint)
          filteredInstances.addReference(inst);
      }
    }
    return filteredInstances;
  }
コード例 #4
0
ファイル: DecisionTable.java プロジェクト: alishakiba/jDenetX
  /**
   * Returns a description of the classifier.
   *
   * @return a description of the classifier as a string.
   */
  public String toString() {

    if (m_entries == null) {
      return "Decision Table: No model built yet.";
    } else {
      StringBuffer text = new StringBuffer();

      text.append(
          "Decision Table:"
              + "\n\nNumber of training instances: "
              + m_numInstances
              + "\nNumber of Rules : "
              + m_entries.size()
              + "\n");

      if (m_useIBk) {
        text.append("Non matches covered by IB1.\n");
      } else {
        text.append("Non matches covered by Majority class.\n");
      }

      text.append(m_search.toString());
      /*text.append("Best first search for feature set,\nterminated after "+
      m_maxStale+" non improving subsets.\n"); */

      text.append("Evaluation (for feature selection): CV ");
      if (m_CVFolds > 1) {
        text.append("(" + m_CVFolds + " fold) ");
      } else {
        text.append("(leave one out) ");
      }
      text.append("\nFeature set: " + printFeatures());

      if (m_displayRules) {

        // find out the max column width
        int maxColWidth = 0;
        for (int i = 0; i < m_dtInstances.numAttributes(); i++) {
          if (m_dtInstances.attribute(i).name().length() > maxColWidth) {
            maxColWidth = m_dtInstances.attribute(i).name().length();
          }

          if (m_classIsNominal || (i != m_dtInstances.classIndex())) {
            Enumeration e = m_dtInstances.attribute(i).enumerateValues();
            while (e.hasMoreElements()) {
              String ss = (String) e.nextElement();
              if (ss.length() > maxColWidth) {
                maxColWidth = ss.length();
              }
            }
          }
        }

        text.append("\n\nRules:\n");
        StringBuffer tm = new StringBuffer();
        for (int i = 0; i < m_dtInstances.numAttributes(); i++) {
          if (m_dtInstances.classIndex() != i) {
            int d = maxColWidth - m_dtInstances.attribute(i).name().length();
            tm.append(m_dtInstances.attribute(i).name());
            for (int j = 0; j < d + 1; j++) {
              tm.append(" ");
            }
          }
        }
        tm.append(m_dtInstances.attribute(m_dtInstances.classIndex()).name() + "  ");

        for (int i = 0; i < tm.length() + 10; i++) {
          text.append("=");
        }
        text.append("\n");
        text.append(tm);
        text.append("\n");
        for (int i = 0; i < tm.length() + 10; i++) {
          text.append("=");
        }
        text.append("\n");

        Enumeration e = m_entries.keys();
        while (e.hasMoreElements()) {
          DecisionTableHashKey tt = (DecisionTableHashKey) e.nextElement();
          text.append(tt.toString(m_dtInstances, maxColWidth));
          double[] ClassDist = (double[]) m_entries.get(tt);

          if (m_classIsNominal) {
            int m = Utils.maxIndex(ClassDist);
            try {
              text.append(m_dtInstances.classAttribute().value(m) + "\n");
            } catch (Exception ee) {
              System.out.println(ee.getMessage());
            }
          } else {
            text.append((ClassDist[0] / ClassDist[1]) + "\n");
          }
        }

        for (int i = 0; i < tm.length() + 10; i++) {
          text.append("=");
        }
        text.append("\n");
        text.append("\n");
      }
      return text.toString();
    }
  }