コード例 #1
0
ファイル: RBigDataTest.java プロジェクト: nadya1/h2o
 protected void testScalarExpression(String expr, double result) {
   Key key = executeExpression(expr);
   ValueArray va = ValueArray.value(key);
   assertEquals(va.numRows(), 1);
   assertEquals(va.numCols(), 1);
   assertEquals(result, va.datad(0, 0), 0.0);
   UKV.remove(key);
 }
コード例 #2
0
ファイル: RandomForestTest.java プロジェクト: NidhiMehta/h2o
  // Test kaggle/creditsample-test data
  @org.junit.Test
  public void kaggle_credit() {
    Key okey = loadAndParseFile("credit.hex", "smalldata/kaggle/creditsample-training.csv.gz");
    UKV.remove(Key.make("smalldata/kaggle/creditsample-training.csv.gz_UNZIPPED"));
    UKV.remove(Key.make("smalldata\\kaggle\\creditsample-training.csv.gz_UNZIPPED"));
    ValueArray val = DKV.get(okey).get();

    // Check parsed dataset
    final int n = new int[] {4, 2, 1}[ValueArray.LOG_CHK - 20];
    assertEquals("Number of chunks", n, val.chunks());
    assertEquals("Number of rows", 150000, val.numRows());
    assertEquals("Number of cols", 12, val.numCols());

    // setup default values for DRF
    int ntrees = 3;
    int depth = 30;
    int gini = StatType.GINI.ordinal();
    int seed = 42;
    StatType statType = StatType.values()[gini];
    final int cols[] =
        new int[] {0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 1}; // ignore column 6, classify column 1

    // Start the distributed Random Forest
    final Key modelKey = Key.make("model");
    DRFJob result =
        hex.rf.DRF.execute(
            modelKey,
            cols,
            val,
            ntrees,
            depth,
            1024,
            statType,
            seed,
            true,
            null,
            -1,
            Sampling.Strategy.RANDOM,
            1.0f,
            null,
            0,
            0,
            false);
    // Wait for completion on all nodes
    RFModel model = result.get();

    assertEquals("Number of classes", 2, model.classes());
    assertEquals("Number of trees", ntrees, model.size());

    model.deleteKeys();
    UKV.remove(modelKey);
    UKV.remove(okey);
  }
コード例 #3
0
ファイル: RFView.java プロジェクト: jayfans3/h2o
 public static Response redirect(JsonObject fromPageResponse, Key rfModelKey) {
   RFModel rfModel = DKV.get(rfModelKey).get();
   ValueArray data = DKV.get(rfModel._dataKey).get();
   return redirect(
       fromPageResponse,
       null,
       rfModelKey,
       rfModel._dataKey,
       rfModel._totalTrees,
       data.numCols() - 1,
       null,
       true,
       false);
 }
コード例 #4
0
ファイル: RandomForestTest.java プロジェクト: NidhiMehta/h2o
  /*@org.junit.Test*/ public void covtype() {
    // Key okey = loadAndParseFile("covtype.hex", "smalldata/covtype/covtype.20k.data");
    // Key okey = loadAndParseFile("covtype.hex", "../datasets/UCI/UCI-large/covtype/covtype.data");
    // Key okey = loadAndParseFile("covtype.hex", "/home/0xdiag/datasets/standard/covtype.data");
    Key okey = loadAndParseFile("mnist.hex", "smalldata/mnist/mnist8m.10k.csv.gz");
    // Key okey = loadAndParseFile("mnist.hex", "/home/0xdiag/datasets/mnist/mnist8m.csv");
    ValueArray val = UKV.get(okey);

    // setup default values for DRF
    int ntrees = 8;
    int depth = 999;
    int gini = StatType.ENTROPY.ordinal();
    int seed = 42;
    StatType statType = StatType.values()[gini];
    final int cols[] = new int[val.numCols()];
    for (int i = 1; i < cols.length; i++) cols[i] = i - 1;
    cols[cols.length - 1] = 0; // Class is in column 0 for mnist

    // Start the distributed Random Forest
    final Key modelKey = Key.make("model");
    DRFJob result =
        hex.rf.DRF.execute(
            modelKey,
            cols,
            val,
            ntrees,
            depth,
            1024,
            statType,
            seed,
            true,
            null,
            -1,
            Sampling.Strategy.RANDOM,
            1.0f,
            null,
            0,
            0,
            false);
    // Wait for completion on all nodes
    RFModel model = result.get();

    assertEquals("Number of classes", 10, model.classes());
    assertEquals("Number of trees", ntrees, model.size());

    model.deleteKeys();
    UKV.remove(modelKey);
    UKV.remove(okey);
  }
コード例 #5
0
ファイル: GLMRunner.java プロジェクト: NidhiMehta/h2o
 /**
  * Simple GLM wrapper to enable launching GLM from command line.
  *
  * <p>Example input: java -jar target/h2o.jar -name=test -runMethod water.util.GLMRunner
  * -file=smalldata/logreg/prostate.csv -y=CAPSULE -family=binomial
  *
  * @param args
  * @throws InterruptedException
  */
 public static void main(String[] args) throws InterruptedException {
   try {
     GLMArgs ARGS = new GLMArgs();
     new Arguments(args).extract(ARGS);
     System.out.println("==================<GLMRunner START>===================");
     ValueArray ary = Utils.loadAndParseKey(ARGS.file);
     int ycol;
     try {
       ycol = Integer.parseInt(ARGS.y);
     } catch (NumberFormatException e) {
       ycol = ary.getColumnIds(new String[] {ARGS.y})[0];
     }
     int ncols = ary.numCols();
     if (ycol < 0 || ycol >= ary.numCols()) {
       System.err.println("invalid y column: " + ycol);
       H2O.exit(-1);
     }
     int[] xcols;
     if (ARGS.xs.equalsIgnoreCase("all")) {
       xcols = new int[ncols - 1];
       for (int i = 0; i < ycol; ++i) xcols[i] = i;
       for (int i = ycol; i < ncols - 1; ++i) xcols[i] = i + 1;
     } else {
       System.out.println("xs = " + ARGS.xs);
       String[] names = ARGS.xs.split(",");
       xcols = new int[names.length];
       try {
         for (int i = 0; i < names.length; ++i) xcols[i] = Integer.valueOf(names[i]);
       } catch (NumberFormatException e) {
         xcols = ary.getColumnIds(ARGS.xs.split(","));
       }
     }
     for (int x : xcols)
       if (x < 0) {
         System.err.println("Invalid predictor specification " + ARGS.xs);
         H2O.exit(-1);
       }
     GLMJob j =
         DGLM.startGLMJob(
             DGLM.getData(ary, xcols, ycol, null, true),
             new ADMMSolver(ARGS.lambda, ARGS._alpha),
             new GLMParams(Family.valueOf(ARGS.family)),
             null,
             ARGS.xval,
             true);
     System.out.print("[GLM] computing model...");
     int progress = 0;
     while (!j.isDone()) {
       int p = (int) (100 * j.progress());
       int dots = p - progress;
       progress = p;
       for (int i = 0; i < dots; ++i) System.out.print('.');
       Thread.sleep(250);
     }
     Log.debug(Sys.GENLM, "DONE.");
     GLMModel m = j.get();
     String[] colnames = ary.colNames();
     System.out.println("Intercept" + " = " + m._beta[ncols - 1]);
     for (int i = 0; i < xcols.length; ++i) {
       System.out.println(colnames[i] + " = " + m._beta[i]);
     }
   } catch (Throwable t) {
     Log.err(t);
   } finally { // we're done. shutdown the cloud
     Log.debug(Sys.GENLM, "==================<GLMRunner DONE>===================");
     UDPRebooted.suicide(UDPRebooted.T.shutdown, H2O.SELF);
   }
 }
コード例 #6
0
ファイル: RBigDataTest.java プロジェクト: nadya1/h2o
 public void testDataFrameStructure(Key k, int rows, int cols) {
   ValueArray v = ValueArray.value(k);
   assertEquals(v.numRows(), rows);
   assertEquals(v.numCols(), cols);
 }