コード例 #1
0
ファイル: KMeansModel.java プロジェクト: raghavendrabhat/h2o
 @Override
 public void map(Key key) {
   _rows = new long[_clusters.length];
   _dist = new double[_clusters.length];
   assert key.home();
   ValueArray va = DKV.get(_arykey).get();
   AutoBuffer bits = va.getChunk(key);
   int rows = va.rpc(ValueArray.getChunkIndex(key));
   double[] values = new double[_cols.length - 1];
   ClusterDist cd = new ClusterDist();
   for (int row = 0; row < rows; row++) {
     KMeans.datad(va, bits, row, _cols, _normalized, values);
     KMeans.closest(_clusters, values, cd);
     _rows[cd._cluster]++;
     _dist[cd._cluster] += cd._dist;
   }
   _arykey = null;
   _cols = null;
   _clusters = null;
 }
コード例 #2
0
ファイル: KMeansModel.java プロジェクト: raghavendrabhat/h2o
 /**
  * Single row scoring, on properly ordered data. Will return NaN if any data element contains a
  * NaN. Returns the cluster-number, which is mostly an internal value. Last data element refers to
  * the response variable, which is not used for k-means.
  */
 @Override
 protected double score0(double[] data) {
   for (int i = 0; i < data.length - 1; i++) { // Normalize the data before scoring
     ValueArray.Column C = _va._cols[i];
     double d = data[i];
     if (_normalized) {
       d -= C._mean;
       if (C._sigma != 0.0 && !Double.isNaN(C._sigma)) d /= C._sigma;
     }
     data[i] = d;
   }
   data[data.length - 1] = Double.NaN; // Response variable column not used
   return KMeans.closest(_clusters, data, new ClusterDist())._cluster;
 }
コード例 #3
0
ファイル: KMeansModel.java プロジェクト: raghavendrabhat/h2o
 /**
  * Creates a new ValueArray with classes. New ValueArray is not aligned with source one
  * unfortunately so have to send results to each chunk owner using Atomic.
  */
 @Override
 public void map(Key key) {
   assert key.home();
   if (Job.isRunning(_job.self())) {
     ValueArray va = DKV.get(_arykey).get();
     AutoBuffer bits = va.getChunk(key);
     long startRow = va.startRow(ValueArray.getChunkIndex(key));
     int rows = va.rpc(ValueArray.getChunkIndex(key));
     int rpc = (int) (ValueArray.CHUNK_SZ / ROW_SIZE);
     long chunk = ValueArray.chknum(startRow, va.numRows(), ROW_SIZE);
     long updatedChk = chunk;
     long updatedRow = startRow;
     double[] values = new double[_cols.length - 1];
     ClusterDist cd = new ClusterDist();
     int[] clusters = new int[rows];
     int count = 0;
     for (int row = 0; row < rows; row++) {
       KMeans.datad(va, bits, row, _cols, _normalized, values);
       KMeans.closest(_clusters, values, cd);
       chunk = ValueArray.chknum(startRow + row, va.numRows(), ROW_SIZE);
       if (chunk != updatedChk) {
         updateClusters(clusters, count, updatedChk, va.numRows(), rpc, updatedRow);
         updatedChk = chunk;
         updatedRow = startRow + row;
         count = 0;
       }
       clusters[count++] = cd._cluster;
     }
     if (count > 0) updateClusters(clusters, count, chunk, va.numRows(), rpc, updatedRow);
     _job.updateProgress(1);
   }
   _job = null;
   _arykey = null;
   _cols = null;
   _clusters = null;
 }