コード例 #1
0
ファイル: AstSumAxisTest.java プロジェクト: h2oai/h2o-3
 @Test
 public void testRowwisesumOnFrameWithNonnumericColumnsOnly() {
   Frame fr = register(new Frame(Key.<Frame>make(), ar("c1", "s1"), aro(vc2, vs1)));
   Val val = Rapids.exec("(sumaxis " + fr._key + " 1 1)");
   assertTrue(val instanceof ValFrame);
   Frame res = register(val.getFrame());
   assertEquals("Unexpected column name", "sum", res.name(0));
   assertEquals("Unexpected column type", Vec.T_NUM, res.types()[0]);
   assertColFrameEquals(ard(Double.NaN, Double.NaN, Double.NaN, Double.NaN, Double.NaN), res);
 }
コード例 #2
0
ファイル: AstSumAxisTest.java プロジェクト: h2oai/h2o-3
 @Test
 public void testRowwisesumOnFrameWithTimeColumnsOnly() {
   Frame fr = register(new Frame(Key.<Frame>make(), ar("t1", "s", "t2"), aro(vt1, vs1, vt2)));
   Val val = Rapids.exec("(sumaxis " + fr._key + " 1 1)");
   assertTrue(val instanceof ValFrame);
   Frame res = register(val.getFrame());
   assertEquals("Unexpected column name", "sum", res.name(0));
   assertEquals("Unexpected column type", Vec.T_TIME, res.types()[0]);
   assertColFrameEquals(ard(30000000, 30000040, 30000060, 30000080, 30000120), res);
 }
コード例 #3
0
ファイル: AstSumAxisTest.java プロジェクト: h2oai/h2o-3
 @Test
 public void testColumnwisesumBinaryVec() {
   assertTrue(vc1.isBinary() && !vc2.isBinary());
   Frame fr = register(new Frame(Key.<Frame>make(), ar("C1", "C2"), aro(vc1, vc2)));
   Val val = Rapids.exec("(sumaxis " + fr._key + " 1 0)");
   assertTrue(val instanceof ValFrame);
   Frame res = register(val.getFrame());
   assertArrayEquals(fr.names(), res.names());
   assertArrayEquals(ar(Vec.T_NUM, Vec.T_NUM), res.types());
   assertRowFrameEquals(ard(3.0, Double.NaN), res);
 }
コード例 #4
0
ファイル: AstSumAxisTest.java プロジェクト: h2oai/h2o-3
 @Test
 public void testRowwisesumWithNaRm() {
   Frame fr =
       register(
           new Frame(
               Key.<Frame>make(), ar("i1", "d1", "d2", "d3", "s1"), aro(vi1, vd1, vd2, vd3, vs1)));
   Val val = Rapids.exec("(sumaxis " + fr._key + " 1 1)");
   assertTrue(val instanceof ValFrame);
   Frame res = register(val.getFrame());
   assertEquals("Unexpected column name", "sum", res.name(0));
   assertEquals("Unexpected column type", Vec.T_NUM, res.types()[0]);
   assertColFrameEquals(ard(1.7, 2.9, 4.1, 10.3, 10.0), res);
 }
コード例 #5
0
ファイル: AstSumAxisTest.java プロジェクト: h2oai/h2o-3
 @Test
 public void testColumnwiseSumWithNaRm() {
   Frame fr =
       register(
           new Frame(
               Key.<Frame>make(),
               ar("I", "D", "DD", "DN", "T", "S", "C"),
               aro(vi1, vd1, vd2, vd3, vt1, vs1, vc2)));
   Val val = Rapids.exec("(sumaxis " + fr._key + " 1 0)");
   assertTrue(val instanceof ValFrame);
   Frame res = register(val.getFrame());
   assertArrayEquals(fr.names(), res.names());
   assertArrayEquals(
       ar(Vec.T_NUM, Vec.T_NUM, Vec.T_NUM, Vec.T_NUM, Vec.T_TIME, Vec.T_NUM, Vec.T_NUM),
       res.types());
   assertRowFrameEquals(ard(0.0, 20.0, 3.0, 6.0, 50000150.0, Double.NaN, Double.NaN), res);
 }
コード例 #6
0
ファイル: ASTColSlice.java プロジェクト: hickeye/h2o-3
  @Override
  Val apply(Env env, Env.StackHelp stk, AST asts[]) {
    Frame fr = stk.track(asts[1].exec(env)).getFrame();
    Frame returningFrame;
    long nrows = fr.numRows();
    if (asts[2] instanceof ASTNumList) {
      final ASTNumList nums = (ASTNumList) asts[2];
      long[] rows = nums._isList ? nums.expand8Sort() : null;
      if (rows != null) {
        if (rows.length == 0) { // Empty inclusion list?
        } else if (rows[0] >= 0) { // Positive (inclusion) list
          if (rows[rows.length - 1] > nrows)
            throw new IllegalArgumentException("Row must be an integer from 0 to " + (nrows - 1));
        } else { // Negative (exclusion) list
          // Invert the list to make a positive list, ignoring out-of-bounds values
          BitSet bs = new BitSet((int) nrows);
          for (int i = 0; i < rows.length; i++) {
            int idx = (int) (-rows[i] - 1); // The positive index
            if (idx >= 0 && idx < nrows) bs.set(idx); // Set column to EXCLUDE
          }
          rows = new long[(int) nrows - bs.cardinality()];
          for (int i = bs.nextClearBit(0), j = 0; i < nrows; i = bs.nextClearBit(i + 1))
            rows[j++] = i;
        }
      }
      final long[] ls = rows;

      returningFrame =
          new MRTask() {
            @Override
            public void map(Chunk[] cs, NewChunk[] ncs) {
              if (nums.cnt() == 0) return;
              long start = cs[0].start();
              long end = start + cs[0]._len;
              long min = ls == null ? (long) nums.min() : ls[0],
                  max =
                      ls == null
                          ? (long) nums.max() - 1
                          : ls[ls.length - 1]; // exclusive max to inclusive max when stride == 1
              //     [ start, ...,  end ]     the chunk
              // 1 []                          nums out left:  nums.max() < start
              // 2                         []  nums out rite:  nums.min() > end
              // 3 [ nums ]                    nums run left:  nums.min() < start && nums.max() <=
              // end
              // 4          [ nums ]           nums run in  :  start <= nums.min() && nums.max() <=
              // end
              // 5                   [ nums ]  nums run rite:  start <= nums.min() && end <
              // nums.max()
              if (!(max < start || min > end)) { // not situation 1 or 2 above
                long startOffset = (min > start ? min : start); // situation 4 and 5 => min > start;
                for (int i = (int) (startOffset - start); i < cs[0]._len; ++i) {
                  if ((ls == null && nums.has(start + i))
                      || (ls != null && Arrays.binarySearch(ls, start + i) >= 0)) {
                    for (int c = 0; c < cs.length; ++c) {
                      if (cs[c] instanceof CStrChunk) ncs[c].addStr(cs[c], i);
                      else if (cs[c] instanceof C16Chunk) ncs[c].addUUID(cs[c], i);
                      else if (cs[c].isNA(i)) ncs[c].addNA();
                      else ncs[c].addNum(cs[c].atd(i));
                    }
                  }
                }
              }
            }
          }.doAll(fr.types(), fr).outputFrame(fr.names(), fr.domains());
    } else if ((asts[2] instanceof ASTNum)) {
      long[] rows = new long[] {(long) (((ASTNum) asts[2])._v.getNum())};
      returningFrame = fr.deepSlice(rows, null);
    } else if ((asts[2] instanceof ASTExec) || (asts[2] instanceof ASTId)) {
      Frame predVec = stk.track(asts[2].exec(env)).getFrame();
      if (predVec.numCols() != 1)
        throw new IllegalArgumentException(
            "Conditional Row Slicing Expression evaluated to "
                + predVec.numCols()
                + " columns.  Must be a boolean Vec.");
      returningFrame = fr.deepSlice(predVec, null);
    } else
      throw new IllegalArgumentException(
          "Row slicing requires a number-list as the last argument, but found a "
              + asts[2].getClass());
    return new ValFrame(returningFrame);
  }
コード例 #7
0
ファイル: ASTColSlice.java プロジェクト: hickeye/h2o-3
  @Override
  Val apply(Env env, Env.StackHelp stk, AST asts[]) {

    // Execute all args.  Find a canonical frame; all Frames must look like this one.
    // Each argument turns into either a Frame (whose rows are entirely
    // inlined) or a scalar (which is replicated across as a single row).
    Frame fr = null; // Canonical Frame; all frames have the same column count, types and names
    int nchks = 0; // Total chunks
    Val vals[] = new Val[asts.length]; // Computed AST results
    for (int i = 1; i < asts.length; i++) {
      vals[i] = stk.track(asts[i].exec(env));
      if (vals[i].isFrame()) {
        fr = vals[i].getFrame();
        nchks += fr.anyVec().nChunks(); // Total chunks
      } else nchks++; // One chunk per scalar
    }
    // No Frame, just a pile-o-scalars?
    Vec zz = null; // The zero-length vec for the zero-frame frame
    if (fr == null) { // Zero-length, 1-column, default name
      fr = new Frame(new String[] {Frame.defaultColName(0)}, new Vec[] {zz = Vec.makeZero(0)});
      if (asts.length == 1) return new ValFrame(fr);
    }

    // Verify all Frames are the same columns, names, and types.  Domains can vary, and will be the
    // union
    final Frame frs[] = new Frame[asts.length]; // Input frame
    final byte[] types = fr.types(); // Column types
    final int ncols = fr.numCols();
    final long[] espc = new long[nchks + 1]; // Compute a new layout!
    int coffset = 0;

    for (int i = 1; i < asts.length; i++) {
      Val val = vals[i]; // Save values computed for pass 2
      Frame fr0 =
          val.isFrame()
              ? val.getFrame()
              // Scalar: auto-expand into a 1-row frame
              : stk.track(new Frame(fr._names, Vec.makeCons(val.getNum(), 1L, fr.numCols())));

      // Check that all frames are compatible
      if (fr.numCols() != fr0.numCols())
        throw new IllegalArgumentException(
            "rbind frames must have all the same columns, found "
                + fr.numCols()
                + " and "
                + fr0.numCols()
                + " columns.");
      if (!Arrays.deepEquals(fr._names, fr0._names))
        throw new IllegalArgumentException(
            "rbind frames must have all the same column names, found "
                + Arrays.toString(fr._names)
                + " and "
                + Arrays.toString(fr0._names));
      if (!Arrays.equals(types, fr0.types()))
        throw new IllegalArgumentException(
            "rbind frames must have all the same column types, found "
                + Arrays.toString(types)
                + " and "
                + Arrays.toString(fr0.types()));

      frs[i] = fr0; // Save frame

      // Roll up the ESPC row counts
      long roffset = espc[coffset];
      long[] espc2 = fr0.anyVec().espc();
      for (int j = 1; j < espc2.length; j++) // Roll up the row counts
      espc[coffset + j] = (roffset + espc2[j]);
      coffset += espc2.length - 1; // Chunk offset
    }
    if (zz != null) zz.remove();

    // build up the new domains for each vec
    HashMap<String, Integer>[] dmap = new HashMap[types.length];
    String[][] domains = new String[types.length][];
    int[][][] cmaps = new int[types.length][][];
    for (int k = 0; k < types.length; ++k) {
      dmap[k] = new HashMap<>();
      int c = 0;
      byte t = types[k];
      if (t == Vec.T_CAT) {
        int[][] maps = new int[frs.length][];
        for (int i = 1; i < frs.length; i++) {
          maps[i] = new int[frs[i].vec(k).domain().length];
          for (int j = 0; j < maps[i].length; j++) {
            String s = frs[i].vec(k).domain()[j];
            if (!dmap[k].containsKey(s)) dmap[k].put(s, maps[i][j] = c++);
            else maps[i][j] = dmap[k].get(s);
          }
        }
        cmaps[k] = maps;
      } else {
        cmaps[k] = new int[frs.length][];
      }
      domains[k] = c == 0 ? null : new String[c];
      for (Map.Entry<String, Integer> e : dmap[k].entrySet()) domains[k][e.getValue()] = e.getKey();
    }

    // Now make Keys for the new Vecs
    Key<Vec>[] keys = fr.anyVec().group().addVecs(fr.numCols());
    Vec[] vecs = new Vec[fr.numCols()];
    int rowLayout = Vec.ESPC.rowLayout(keys[0], espc);
    for (int i = 0; i < vecs.length; i++)
      vecs[i] = new Vec(keys[i], rowLayout, domains[i], types[i]);

    // Do the row-binds column-by-column.
    // Switch to F/J thread for continuations
    ParallelRbinds t;
    H2O.submitTask(t = new ParallelRbinds(frs, espc, vecs, cmaps)).join();
    return new ValFrame(new Frame(fr.names(), t._vecs));
  }