public ImageRecord[] update(ImageRecord[] deltas, Integer batchSize, Double learningRate) throws ScaleNotMatchException { int imageSize = deltas.length; ImageRecord[] deltaResult = new ImageRecord[this.inMapSize]; for (int i = 0; i < imageSize; i++) deltas[i] = new ImageRecord( MathUtils.MatrixElementMultiply( deltas[i].getImage(), MathUtils.MatrixElementMultiply( outputs[i].getImage(), MathUtils.ContantMinusArray(outputs[i].getImage(), 1.0))), -999); this.d = deltas; // 保存卷积层的灵敏度 for (int i = 0; i < inMapSize; i++) { Double[][] image = new Double[inputSize.GetLeftElement()][inputSize.GetRightElement()]; for (int j = 0; j < inputSize.GetLeftElement(); j++) for (int k = 0; k < inputSize.GetRightElement(); k++) image[j][k] = 0.0; for (int j = 0; j < imageSize; j++) { image = MathUtils.addArrays( image, MathUtils.conv(deltas[j].getImage(), kernels[i][j].getRotatedKernel(), "full")); } deltaResult[i] = new ImageRecord(image, -999); } calculateGradient(); this.batchCount += 1; // 按batchsize更新权重 if (this.batchCount == batchSize - 1) { updateWeight(learningRate); this.batchCount = 0; } return deltaResult; }
public ImageRecord[] calculateOutputs(ImageRecord[] inputs) throws ScaleNotMatchException { this.inputs = inputs; for (int i = 0; i < outMapSize; i++) { Double[][] z = new Double[outputSize.GetLeftElement()][outputSize.GetRightElement()]; // 初始化输出图像 for (int j = 0; j < inputs.length; j++) { ImageRecord input = inputs[j]; z = MathUtils.addArrays( z, MathUtils.conv(input.getImage(), kernels[j][i].getKernel(), "valid")); // 图像卷积 } z = MathUtils.AddConstantToArray(z, b[i]); z = MathUtils.SigmoidForImage(z); outputs[i] = new ImageRecord(z, -999); } return outputs; }
public ConvLayer( Pair<Integer, Integer> inputSize, Integer inMapSize, Integer outMapSize, Integer kernelSize, String activationFunction) { super(); type = "Convolutional Layer"; this.activationFunction = activationFunction; this.inputSize = new Pair<Integer, Integer>(inputSize); this.outputSize = new Pair<Integer, Integer>( inputSize.GetLeftElement() - kernelSize + 1, inputSize.GetRightElement() - kernelSize + 1); this.inMapSize = inMapSize; this.kernelSize = kernelSize; this.outMapSize = outMapSize; this.fan_in = inMapSize * (kernelSize * kernelSize); // 该卷积层的一个map对应的卷积核权重数 this.fan_out = outMapSize * (kernelSize * kernelSize); // 该卷积层的卷积核权重数 this.outputs = new ImageRecord[outMapSize]; init_Kernels(); init_b(); }