public Map<String, Object> calculateObjects(Map<String, Object> input) { Map<String, Object> result = new HashMap<String, Object>(); Matrix source = MathUtil.getMatrix(input.get(SOURCE)); Matrix target = Matrix.Factory.zeros(source.getRowCount(), 1); long cols = source.getColumnCount(); long rows = source.getRowCount(); for (int k = 0; k < rows; k++) { int tp = 0; int fn = 0; for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { int count = source.getAsInt(r, c); boolean expected = r == k; boolean predicted = c == k; if (expected && predicted) { tp += count; } else if (expected && (!predicted)) { fn += count; } } } target.setAsDouble(MathUtil.sensitivity(tp, fn), k, 0); } result.put(TARGET, target); return result; }
public Long call() throws Exception { Matrix newColumn = replaceInColumn(getSource(), bestGuess, column); synchronized (imputed) { for (int r = 0; r < newColumn.getRowCount(); r++) { imputed.setAsDouble(newColumn.getAsDouble(r, 0), r, column); } } return column; }
private Matrix calculate() { wordMapping = new DefaultMapMatrix<String, Long>(); Matrix m = getSource(); for (long[] c : m.availableCoordinates()) { String s = m.getAsString(c); if (s != null) { String[] words = s.split("\\s+"); for (String w : words) { if (w.length() == 0) { continue; } Long i = wordMapping.get(w); if (i == null) { wordMapping.put(w, wordMapping.getRowCount()); } } } } result = new DefaultSparseLongMatrix(m.getRowCount(), wordMapping.getRowCount()); long rowCount = m.getRowCount(); long colCount = m.getColumnCount(); for (long row = 0; row < rowCount; row++) { for (long col = 0; col < colCount; col++) { String string = m.getAsString(row, col); if (string != null && string.length() > 0) { String[] words = string.split("[\\s]+"); for (String w : words) { if (w.length() == 0) { continue; } long i = wordMapping.get(w); int count = result.getAsInt(row, i); result.setAsInt(++count, row, i); } } } } return result; }
private static Matrix replaceInColumn(Matrix original, Matrix firstGuess, long column) { Matrix x = firstGuess.deleteColumns(Ret.NEW, column); Matrix y = original.selectColumns(Ret.NEW, column); List<Long> missingRows = new ArrayList<Long>(); for (long i = y.getRowCount(); --i >= 0; ) { double v = y.getAsDouble(i, 0); if (MathUtil.isNaNOrInfinite(v)) { missingRows.add(i); } } if (missingRows.isEmpty()) { return y; } Matrix xdel = x.deleteRows(Ret.NEW, missingRows); DenseDoubleMatrix2D bias1 = DenseDoubleMatrix2D.Factory.ones(xdel.getRowCount(), 1); Matrix xtrain = Matrix.Factory.horCat(xdel, bias1); Matrix ytrain = y.deleteRows(Ret.NEW, missingRows); Matrix xinv = xtrain.pinv(); Matrix b = xinv.mtimes(ytrain); DenseDoubleMatrix2D bias2 = DenseDoubleMatrix2D.Factory.ones(x.getRowCount(), 1); Matrix yPredicted = Matrix.Factory.horCat(x, bias2).mtimes(b); // set non-missing values back to original values for (int row = 0; row < y.getRowCount(); row++) { double v = y.getAsDouble(row, 0); if (!Double.isNaN(v)) { yPredicted.setAsDouble(v, row, 0); } } return yPredicted; }
public DefaultDenseObjectMatrix2D(Matrix m) throws MatrixException { this.rows = (int) m.getRowCount(); this.cols = (int) m.getColumnCount(); this.size = new long[] {rows, cols}; if (m instanceof DefaultDenseObjectMatrix2D) { Object[] v = ((DefaultDenseObjectMatrix2D) m).values; this.values = new Object[v.length]; System.arraycopy(v, 0, this.values, 0, v.length); } else { this.values = new Object[rows * cols]; for (long[] c : m.allCoordinates()) { setObject(m.getAsObject(c), c); } } }
public void asLatex() throws IOException { final String EOL = System.getProperty("line.separator"); final Writer writer = getWriter(); final Matrix matrix = getMatrix(); final long rowCount = matrix.getRowCount(); final long colCount = matrix.getColumnCount(); writer.write("\\begin{table}[!ht]" + EOL); writer.write("\\centering" + EOL); if (matrix.getLabelObject() != null) { writer.write( "\\caption{" + UJMPFormat.getSingleLineInstance().format(matrix.getLabelObject()) + "}" + EOL); } StringBuilder buf = new StringBuilder(); for (long i = matrix.getColumnCount() - 1; i != -1; i--) { buf.append('c'); } String alignment = buf.toString(); writer.write("\\begin{tabular}{" + alignment + "}" + EOL); writer.write("\\toprule" + EOL); for (int row = 0; row < rowCount; row++) { for (int col = 0; col < colCount; col++) { writer.write(UJMPFormat.getSingleLineInstance().format(matrix.getAsObject(row, col))); if (col < colCount - 1) { writer.write(" & "); } } writer.write(" \\\\" + EOL); } writer.write("\\bottomrule" + EOL); writer.write("\\end{tabular}" + EOL); writer.write("\\end{table}" + EOL); }
@Override protected double sampleAlpha( Matrix direction, Matrix Aobj, Matrix objConst, double alphaLow, double alphaHigh) { // Construct distribution over the randomly sampled line given by the direction and the bounds // [alphaLow, alphaHigh] Matrix AobjD = Aobj.mtimes(direction); Matrix AobjP = Aobj.mtimes(currentPt); OpenLongObjectHashMap alphaMap = new OpenLongObjectHashMap(); long alphaLowBin = Math.round(alphaLow * alphaRoundingScheme); ObjFunHandle alphaLowHandle = ObjFunHandle.getHandle(alphaLowBin, alphaMap); for (int i = 0; i < Aobj.getRowCount(); i++) { double rate = AobjD.getAsDouble(i, 0); double constant = AobjP.getAsDouble(i, 0) + objConst.getAsDouble(i, 0); double alpha = (-constant) / rate; long alphaBin = Math.round(alpha * alphaRoundingScheme); log.trace("Alpha {}", alpha); log.trace("Rate {} Constant {}", rate, constant); if (rate > epsilon && alpha < alphaHigh) { ObjFunHandle h; if (alpha <= alphaLow) { // This evidence is active over the entire interval h = alphaLowHandle; } else { // This evidence will get active once we reach alpha in the interval h = ObjFunHandle.getHandle(alphaBin, alphaMap); } h.increaseBy(rate, constant); } else if (rate < -epsilon && alpha > alphaLow) { alphaLowHandle.increaseBy(rate, constant); if (alpha >= alphaHigh) { // This evidence is active over the entire interval } else { // This evidence will get inactive once we reach alpha in the interval ObjFunHandle h = ObjFunHandle.getHandle(alphaBin, alphaMap); h.increaseBy(-rate, -constant); } } else { // Considered 0 alphaLowHandle.increaseBy(0.0, constant); } } ObjFunHandle.getHandle(Math.round(alphaHigh * alphaRoundingScheme), alphaMap); AobjD = null; AobjP = null; int length = alphaMap.size(); LongArrayList alphaBinsL = new LongArrayList(length); ObjectArrayList handlesL = new ObjectArrayList(length); alphaMap.pairsSortedByKey(alphaBinsL, handlesL); assert alphaBinsL.size() == length && handlesL.size() == length; double[] logcumulative = new double[length]; double[] cumRate = new double[length - 1]; double[] cumConst = new double[length - 1]; long[] alphaBins = alphaBinsL.elements(); Object[] handles = handlesL.elements(); log.trace("alphaBins: {}", Arrays.toString(alphaBins)); log.trace("handles: {}", Arrays.toString(handles)); // Now compute the cumulative probability distribution ObjFunHandle base = (ObjFunHandle) handles[0]; double baserate = base.getRate(); double baseconstant = base.getConstant(); double basealpha = alphaBins[0] / (double) alphaRoundingScheme; double baselogdivisor = baserate * basealpha + baseconstant; logcumulative[0] = 0.0; double rate = 0.0; double constant = 0.0; for (int i = 1; i < length; i++) { ObjFunHandle h = (ObjFunHandle) handles[i - 1]; rate += h.getRate(); cumRate[i - 1] = rate; constant += h.getConstant(); cumConst[i - 1] = constant; double aL = alphaBins[i - 1] / (double) alphaRoundingScheme, aU = alphaBins[i] / (double) alphaRoundingScheme; double increment; if (rate < -epsilon || rate > epsilon) increment = 1.0 / rate * (Math.exp(baselogdivisor - rate * aL - constant) - Math.exp(baselogdivisor - rate * aU - constant)); else increment = (aU - aL) * Math.exp(baselogdivisor - constant); assert increment > -epsilon : increment; logcumulative[i] = logcumulative[i - 1] + increment; } double total = logcumulative[length - 1]; double randomPt = Math.random() * total; log.trace("Random Pt {}", randomPt); log.trace("logcumulative: {}", Arrays.toString(logcumulative)); int findIndex = Arrays.binarySearch(logcumulative, randomPt); log.trace("Find Index {}", findIndex); double alphaPt; if (findIndex >= 0) alphaPt = alphaBins[findIndex] / (double) alphaRoundingScheme; else { findIndex = -findIndex - 1; assert findIndex > 0 : findIndex; double aL = alphaBins[findIndex - 1] / (double) alphaRoundingScheme; final double crate = cumRate[findIndex - 1]; final double cconstant = cumConst[findIndex - 1]; log.trace("R {}, c {} aL " + aL, crate, cconstant); if (crate < -epsilon || crate > epsilon) { double targetValue = -randomPt + logcumulative[findIndex - 1] + 1.0 / crate * Math.exp(-cconstant - crate * aL + baselogdivisor); log.trace("Target value {}", targetValue); log.trace("Log: {}, inside log {}", Math.log(crate * targetValue), crate * targetValue); alphaPt = -1.0 / crate * (Math.log(crate * targetValue) + cconstant - baselogdivisor); } else { double kcons = Math.exp(baselogdivisor - cconstant); alphaPt = randomPt / kcons - logcumulative[findIndex - 1] / kcons + aL; } assert !Double.isNaN(alphaPt) : "C: " + cconstant + " | R: " + crate + " Pt: " + randomPt + " aL: " + aL + " C0:" + logcumulative[findIndex - 1]; } assert alphaPt >= alphaLow - epsilon && alphaPt <= alphaHigh + epsilon : alphaPt; alphaPt = Math.max(alphaPt, alphaLow); alphaPt = Math.min(alphaPt, alphaHigh); log.trace("Sampled alpha {}", alphaPt); return alphaPt; }
public void calcscores() { Matrix mbase, mbaseavg; Matrix mtemp; double sco, div; @SuppressWarnings("unused") double scodef, divdef; mbase = clustinit.vtestsm; mbaseavg = clustinit.avgsm; scorevar = new double[(int) mbase.getRowCount()]; scorestabdet = new double[(int) mbase.getRowCount()]; scorevardef = new double[(int) mbase.getRowCount()]; scorestabdesc = 0; scorestabpop = 0; for (int i = 0; i < 3; i++) { scorevar[i] = 0; scorevardef[i] = 0; } for (int i = 3; i < mbase.getRowCount(); i++) { mtemp = mbase.selectRows(Ret.LINK, i); sco = mtemp.abs(Ret.LINK).getMeanValue(); sco = sco * mbaseavg.selectRows(Ret.LINK, i).getStdValue(); div = mbaseavg.abs(Ret.LINK).selectRows(Ret.LINK, i).getMeanValue(); if (div > 0) { sco = sco / div; } else { sco = 0; } scorevar[i] = sco; } mbase = clustinit.vtestsmdef; mbaseavg = clustinit.avgsmdef; for (int i = 3; i < mbase.getRowCount(); i++) { mtemp = mbase.selectRows(Ret.LINK, i); sco = mtemp.abs(Ret.LINK).getMeanValue(); sco = sco * mbaseavg.selectRows(Ret.LINK, i).getStdValue(); div = mbaseavg.abs(Ret.LINK).selectRows(Ret.LINK, i).getMeanValue(); if (div > 0) { sco = sco / div; } else { sco = 0; } scorevardef[i] = sco; } scorestabdesc = 0; @SuppressWarnings("unused") int nbvarninit; for (int i = 3; i < mbase.getRowCount(); i++) { scorestabdet[i] = 0; for (int j = 0; j < mbase.getColumnCount(); j++) { scorestabdet[i] += Math.abs( clustinit.vtestsm.getAsDouble(i, j) - clustinit.vtestsm.getAsDouble(i, clustinit.idtickinit)) / Math.max( Math.abs(clustinit.vtestsm.getAsDouble(i, j)), Math.abs(clustinit.vtestsm.getAsDouble(i, clustinit.idtickinit))) / mbase.getColumnCount(); } scorestabdet[i] = 1 - scorestabdet[i]; if (!Double.isNaN(scorestabdet[i])) { scorestabdesc = scorestabdesc + scorestabdet[i] / (mbase.getRowCount() - 3); } } scorestabpop = 0; Cluster nc; for (int j = 0; j < clustHistDef.size(); j++) { nc = clustHistDef.get(j); scorestabpop += (double) clustinit.getNumberOfCommonComponents(nc) / (double) Math.max(clustinit.getComponentIds().size(), nc.getComponentIds().size()); } scorestabpop = (double) scorestabpop / clustinit.vtestsm.getColumnCount(); long idColumn = mbase.getRowForLabel(Cluster.ID_C_NAME); long classLabelColumn = mbase.getRowForLabel(Cluster.CLASS_LABEL_C_NAME); long labelColorColumn = mbase.getRowForLabel("LABEL-COLOR"); for (int i = 3; i < mbase.getRowCount(); i++) { Pattern p = Pattern.compile("CLASS_LABEL"); Matcher m = p.matcher(mbase.getRowLabel(i)); if ((i == idColumn || i == classLabelColumn || i == labelColorColumn || m.lookingAt())) { scorevardef[i] = 0; scorevar[i] = 0; } } }