/** * Method for fitting a Baysian Network. * * @param network a Baysian Network to fit * @param fitted a REXP fitted object */ @SuppressWarnings({"unused", "rawtypes"}) public static void fit(Network network, REXP fitted) { if (fitted == null) { return; } network.setFitted(); ArrayList<Node> nodes; if (network != null) { nodes = (ArrayList<Node>) network.getNodes(); } else { nodes = new ArrayList<Node>(); Vector size = fitted.asVector().getNames(); //// add code } // Step 5 add cpts to nodes for (int i = 0; i < nodes.size(); i++) { Node node = nodes.get(i); // the node to edit double[] da; da = fitted.asVector().at(nodes.get(i).getNodeName()).asVector().at("prob").asDoubleArray(); node.setCpt(da); } }
/** * Method for converting a REXP object into a BN Network. * * @param data the REXP object containing the dataset. * @param network the REXP object to convert * @return a BNNetwork object */ public static Network toBnNetwork(REXP data, REXP network) { List<Node> nodelist = new ArrayList<Node>(); // List of Nodes // Error Check if (data == null || network == null) { return new Network("null", nodelist); } // Temporary Hashmap for storing nodes HashMap<String, Node> nodemap = new HashMap<String, Node>(); REXP rexp1 = network.asVector().at("nodes"); // Nodes @SuppressWarnings("unchecked") // Suppressing Type check Vector<String> nodeNames = rexp1.asVector().getNames(); // Node Names // Step 1 create nodes and put in HashMap for (int i = 0; i < nodeNames.size(); i++) { Node node = new Node(); String nodeName = nodeNames.get(i); node.setNodeName(nodeName); nodemap.put(nodeName, node); // add node to HashMap nodelist.add(node); // add node to List } // Step 2 add parents to nodes for (int i = 0; i < nodeNames.size(); i++) { Node node = nodemap.get(nodeNames.get(i)); // node to edit String[] parents = rexp1.asVector().at(i).asVector().at("parents").asStringArray(); // comment to previous line: array of parentnames for (int j = 0; j < parents.length; j++) { Node pnode = nodemap.get(parents[j]); // parent node node.addParentnode(pnode); // add parent node to node } } // Step 3 add children to nodes for (int i = 0; i < nodeNames.size(); i++) { Node node = nodemap.get(nodeNames.get(i)); // node to edit String[] children = rexp1.asVector().at(i).asVector().at("children").asStringArray(); // comment to previous line: array of childrennames for (int j = 0; j < children.length; j++) { Node cnode = nodemap.get(children[j]); // child node node.addChildnode(cnode); // add child node to node } } // Step 4 get levels for (int i = 0; i < nodeNames.size(); i++) { String rfactor = data.asVector().at(i).asFactor().toString(); // the RFactor as a String Node node = nodemap.get(nodeNames.get(i)); // the node to edit int end = rfactor.indexOf(')'); // getting level String String temp = rfactor.substring(POSITION, end); // getting level String String[] temp2 = temp.split(","); // splitting String for (int j = 0; j < temp2.length; j++) { String str = temp2[j].substring(1, temp2[j].length() - 1); node.addNodeLevel(str); // add level to node } } // Step 5 get algorithm on BN Network String algorithm = network.asVector().at("learning").asVector().at("algo").asString(); // Step 6 add Arcs to BN Network ArrayList<Association> arcs = new ArrayList<Association>(); String[] temp = network.asVector().at("arcs").asStringArray(); for (int i = 0; i < temp.length / 2; i++) { arcs.add(new Association(nodemap.get(temp[temp.length / 2 + i]), nodemap.get(temp[i]))); } // Return BNNetwork return new Network(algorithm, nodelist, arcs); }
// Run prediction method on data based on file name public StockInfo[] runPrediction(Map<String, StockInfo[]> dataToProcess) { double[] resultArrayOpen = null; double[] resultArrayHigh = null; double[] resultArrayLow = null; double[] resultArrayClose = null; double[] resultArrayVolume = null; StockInfo[] predictedDataArray = null; try { logger.log("prediction will start"); // Flat the data to perform prediction on it StockInfo[] flatStockInfo = this.flatMapOfData(dataToProcess); Collections.reverse(Arrays.asList(flatStockInfo)); REXP x; RVector v; // Check for installed packages x = re.eval("installed.packages()"); v = x.asVector(); String[] packages = x.asStringArray(); boolean isForecastInstalled = false; logger.log("<R> getting installed packages"); for (int index = 0; index < packages.length && isForecastInstalled == false; index++) { logger.log("<R> has installed " + packages[index]); if (packages[index] != null && packages[index].compareTo("forecast") == 0) { isForecastInstalled = true; } } // If forecast needs to be installed if (isForecastInstalled == false) { logger.log("<R> will set repos"); // Set CRAN re.eval("r <- getOption(\"repos\")"); re.eval("r[\"CRAN\"] <- \"http://cran.us.r-project.org\""); re.eval("options(repos = r)"); re.eval("rm(r)"); // Install forecast re.eval("install.packages(\"forecast\")"); logger.log("<R> will install forecast package"); } // Load forecast library re.eval("library(\"forecast\")"); logger.log("<R> loaded forecast"); // Make prediction for Open value ----------------------- // Load data into R logger.log("<R> loading data into R"); StringBuilder builder = new StringBuilder("inputData <- c("); for (int index = 0; index < flatStockInfo.length; index++) { builder.append(flatStockInfo[index].open); if (index != flatStockInfo.length - 1) { builder.append(","); } else { builder.append(")"); } } String stringFromBuilder = builder.toString(); re.eval(stringFromBuilder); // Create time series from data logger.log("<R> forecasting open values BestFit"); re.eval("temporalData <- ts(inputData, frequency=365)"); // Forecast data re.eval("forecastData <- forecast(temporalData, h=30)"); // re.eval("arimaModel <- auto.arima(temporalData, max.p=5, max.q=5, max.P=5, max.Q=5)"); // re.eval("forecastData <- forecast(arimaModel, h=30)"); x = re.eval("forecastData"); v = x.asVector(); x = (REXP) v.elementAt(1); // instead of 3 resultArrayOpen = x.asDoubleArray(); // Make prediction for High value ------------------------ builder = new StringBuilder("inputData <- c("); for (int index = 0; index < flatStockInfo.length; index++) { builder.append(flatStockInfo[index].high); if (index != flatStockInfo.length - 1) { builder.append(","); } else { builder.append(")"); } } stringFromBuilder = builder.toString(); re.eval(stringFromBuilder); // Create time series from data logger.log("<R> forecasting high values BestFit"); re.eval("temporalData <- ts(inputData, frequency=365)"); // Forecast data re.eval("forecastData <- forecast(temporalData, h=30)"); // re.eval("arimaModel <- auto.arima(temporalData, max.p=5, max.q=5, max.P=5, max.Q=5)"); // re.eval("forecastData <- forecast(arimaModel, h=30)"); x = re.eval("forecastData"); v = x.asVector(); x = (REXP) v.elementAt(1); resultArrayHigh = x.asDoubleArray(); // Make prediction for Low value ------------------------ builder = new StringBuilder("inputData <- c("); for (int index = 0; index < flatStockInfo.length; index++) { builder.append(flatStockInfo[index].low); if (index != flatStockInfo.length - 1) { builder.append(","); } else { builder.append(")"); } } stringFromBuilder = builder.toString(); re.eval(stringFromBuilder); // Create time series from data logger.log("<R> forecasting low values BestFit"); re.eval("temporalData <- ts(inputData, frequency=365)"); // Forecast data re.eval("forecastData <- forecast(temporalData, h=30)"); // re.eval("arimaModel <- auto.arima(temporalData, max.p=5, max.q=5, max.P=5, max.Q=5)"); // re.eval("forecastData <- forecast(arimaModel, h=30)"); x = re.eval("forecastData"); v = x.asVector(); x = (REXP) v.elementAt(1); resultArrayLow = x.asDoubleArray(); // Make prediction for Close value ------------------------ builder = new StringBuilder("inputData <- c("); for (int index = 0; index < flatStockInfo.length; index++) { builder.append(flatStockInfo[index].close); if (index != flatStockInfo.length - 1) { builder.append(","); } else { builder.append(")"); } } stringFromBuilder = builder.toString(); re.eval(stringFromBuilder); // Create time series from data logger.log("<R> forecasting close values BestFit"); re.eval("temporalData <- ts(inputData, frequency=365)"); // Forecast data re.eval("forecastData <- forecast(temporalData, h=30)"); // re.eval("arimaModel <- auto.arima(temporalData, max.p=5, max.q=5, max.P=5, max.Q=5)"); // re.eval("forecastData <- forecast(arimaModel, h=30)"); x = re.eval("forecastData"); v = x.asVector(); x = (REXP) v.elementAt(1); resultArrayClose = x.asDoubleArray(); // Make prediction for Close value ------------------------ builder = new StringBuilder("inputData <- c("); for (int index = 0; index < flatStockInfo.length; index++) { builder.append(flatStockInfo[index].volume); if (index != flatStockInfo.length - 1) { builder.append(","); } else { builder.append(")"); } } stringFromBuilder = builder.toString(); re.eval(stringFromBuilder); // Create time series from data re.eval("temporalData <- ts(inputData, frequency=365)"); // Forecast data re.eval("forecastData <- forecast(temporalData, h=30)"); // re.eval("arimaModel <- auto.arima(temporalData, max.p=5, max.q=5, max.P=5, max.Q=5)"); // re.eval("forecastData <- forecast(arimaModel, h=30)"); x = re.eval("forecastData"); v = x.asVector(); x = (REXP) v.elementAt(1); resultArrayVolume = x.asDoubleArray(); // Create a single StockInfo[] for all data StockInfo predictedData; predictedDataArray = new StockInfo[30]; Date lastDate = flatStockInfo[flatStockInfo.length - 1].date; Calendar c = Calendar.getInstance(); c.setTime(lastDate); c.add(Calendar.DATE, 1); logger.log("<R> values for forecasted data"); SimpleDateFormat dateFormat = new SimpleDateFormat(); dateFormat.applyPattern("dd/MM/YYYY"); // For all days that were predicted for (int index = 0; index < 30; index++) { predictedData = new StockInfo(); predictedData.open = (float) resultArrayOpen[index]; float maxHigh = (float) StrictMath.max( resultArrayClose[index], StrictMath.max(resultArrayHigh[index], resultArrayOpen[index])); predictedData.high = maxHigh; float minLow = (float) StrictMath.min( resultArrayClose[index], StrictMath.min(resultArrayLow[index], resultArrayOpen[index])); predictedData.low = minLow; predictedData.close = (float) resultArrayClose[index]; predictedData.volume = (int) resultArrayVolume[index]; while (c.get(Calendar.DAY_OF_WEEK) == Calendar.SUNDAY || c.get(Calendar.DAY_OF_WEEK) == Calendar.SATURDAY) { c.add(Calendar.DATE, 1); } predictedData.date = c.getTime(); predictedDataArray[index] = predictedData; logger.log( "<R> stock prediction " + dateFormat.format(predictedData.date.getTime()) + " open: " + predictedData.open + " high: " + predictedData.high + " low: " + predictedData.low + " close: " + predictedData.close); c.add(Calendar.DATE, 1); } } catch (Exception e) { logger.logException(e); } return predictedDataArray; }
public SpotDES initializeDesign() throws InPUTException { REXP designs = runCommand("inputConfig$alg.currentDesign", true); return new SpotDES(designs.asVector(), paramIds, inputROI); }