コード例 #1
0
ファイル: Beta.java プロジェクト: BlackCar/renjin
  public static double qnbeta(
      double p, double a, double b, double ncp, boolean lower_tail, boolean log_p) {
    final double accu = 1e-15;
    final double Eps = 1e-14; /* must be > accu */

    double ux, lx, nx, pp;

    if (DoubleVector.isNaN(p)
        || DoubleVector.isNaN(a)
        || DoubleVector.isNaN(b)
        || DoubleVector.isNaN(ncp)) {
      return p + a + b + ncp;
    }

    if (!DoubleVector.isFinite(a)) {
      return DoubleVector.NaN;
    }

    if (ncp < 0. || a <= 0. || b <= 0.) {
      return DoubleVector.NaN;
    }

    // R_Q_P01_boundaries(p, 0, 1);
    if ((log_p && p > 0) || (!log_p && (p < 0 || p > 1))) {
      return DoubleVector.NaN;
    }
    if (p == SignRank.R_DT_0(lower_tail, log_p)) {
      return 0.0;
    }
    if (p == SignRank.R_DT_1(lower_tail, log_p)) {
      return 1.0;
    }
    // end of R_Q_P01_boundaries

    p = Normal.R_DT_qIv(p, log_p ? 1.0 : 0.0, lower_tail ? 1.0 : 0.0);

    /* Invert pnbeta(.) :
     * 1. finding an upper and lower bound */
    if (p > 1 - SignRank.DBL_EPSILON) {
      return 1.0;
    }
    pp = Math.min(1 - SignRank.DBL_EPSILON, p * (1 + Eps));
    for (ux = 0.5;
        ux < 1 - SignRank.DBL_EPSILON && pnbeta(ux, a, b, ncp, true, false) < pp;
        ux = 0.5 * (1 + ux)) ;
    pp = p * (1 - Eps);
    for (lx = 0.5; lx > Double.MIN_VALUE && pnbeta(lx, a, b, ncp, true, false) > pp; lx *= 0.5) ;

    /* 2. interval (lx,ux)  halving : */
    do {
      nx = 0.5 * (lx + ux);
      if (pnbeta(nx, a, b, ncp, true, false) > p) {
        ux = nx;
      } else {
        lx = nx;
      }
    } while ((ux - lx) / nx > accu);

    return 0.5 * (ux + lx);
  }
コード例 #2
0
ファイル: Beta.java プロジェクト: BlackCar/renjin
  @Primitive
  public static double pnbeta(
      double x, double a, double b, double ncp, boolean lower_tail, boolean log_p) {

    if (DoubleVector.isNaN(x)
        || DoubleVector.isNaN(a)
        || DoubleVector.isNaN(b)
        || DoubleVector.isNaN(ncp)) {
      return x + a + b + ncp;
    }

    // R_P_bounds_01(x, 0., 1.);
    if (x <= 0.0) {
      return SignRank.R_DT_0(lower_tail, log_p);
    }
    if (x >= 1.0) {
      return SignRank.R_DT_1(lower_tail, log_p);
    }

    return pnbeta2(x, 1 - x, a, b, ncp, lower_tail, log_p);
  }