/** * Will only ever be accessed by a single thread. Rechecks the target update time again in case a * second write thread was blocking the current one. {@link #lastUpdateRun} gets set to a negative * value to specify that this method is currently running. */ public void doUpdate() { // Check whether entry is required. if (!state.get().checkNeedsUpdate(forceUpdateInterval)) { return; } // Prevent recursion! // ------------------ // To prevent another call from entering this block it's // necessary to set active if (!active.compareAndSet(false, true)) { return; } try { final Set<String> ids = sessions.keySet(); log.info("Synchronizing session cache. Count = " + ids.size()); final StopWatch sw = new Slf4JStopWatch(); for (String id : ids) { reload(id); } sw.stop("omero.sessions.synchronization"); log.info(String.format("Synchronization took %s ms.", sw.getElapsedTime())); } catch (Exception e) { log.error("Error synchronizing cache", e); } finally { active.set(false); } }
/** * matrix test * * @throws Exception exception */ public void testMatrix() throws Exception { ChatMessage msg = constructMessage(); int count = 100000; // hot swap for (int i = 0; i < 10000; i++) { hessian(msg); jackson(msg); jackson2(msg); msgpack(msg); } System.out.println(count + " loop:"); StopWatch stopWatch = new StopWatch(); stopWatch.start("hessian"); for (int i = 0; i < count; i++) { hessian(msg); } stopWatch.stop("hessian"); System.out.println(stopWatch.getTag() + ":" + stopWatch.getElapsedTime()); stopWatch.start("jackson"); for (int i = 0; i < count; i++) { jackson(msg); } stopWatch.stop("jackson"); System.out.println(stopWatch.getTag() + ":" + stopWatch.getElapsedTime()); stopWatch.start("msgpack"); for (int i = 0; i < count; i++) { msgpack(msg); } stopWatch.stop("msgpack"); System.out.println(stopWatch.getTag() + ":" + stopWatch.getElapsedTime()); stopWatch.start("jackson2"); for (int i = 0; i < count; i++) { jackson2(msg); } stopWatch.stop("jackson2"); System.out.println(stopWatch.getTag() + ":" + stopWatch.getElapsedTime()); }
public static void main(String[] args) throws LPException { final int rows = 40; final int cols = rows; logger.trace("Start Unwrapping"); logger.info("Simulate Data"); SimulateData simulateData = new SimulateData(rows, cols); simulateData.peaks(); DoubleMatrix Phi = simulateData.getSimulatedData(); DoubleMatrix Psi = UnwrapUtils.wrapDoubleMatrix(Phi); StopWatch clockFull = new StopWatch(); clockFull.start(); Unwrapper unwrapper = new Unwrapper(Psi); unwrapper.unwrap(); clockFull.stop(); logger.info("Total processing time {} [sec]", (double) (clockFull.getElapsedTime()) / 1000); }
private void costantiniUnwrap() throws LPException { final int ny = wrappedPhase.rows - 1; // start from Zero! final int nx = wrappedPhase.columns - 1; // start from Zero! if (wrappedPhase.isVector()) throw new IllegalArgumentException("Input must be 2D array"); if (wrappedPhase.rows < 2 || wrappedPhase.columns < 2) throw new IllegalArgumentException("Size of input must be larger than 2"); // Default weight DoubleMatrix w1 = DoubleMatrix.ones(ny + 1, 1); w1.put(0, 0.5); w1.put(w1.length - 1, 0.5); DoubleMatrix w2 = DoubleMatrix.ones(1, nx + 1); w2.put(0, 0.5); w2.put(w2.length - 1, 0.5); DoubleMatrix weight = w1.mmul(w2); DoubleMatrix i, j, I_J, IP1_J, I_JP1; DoubleMatrix Psi1, Psi2; DoubleMatrix[] ROWS; // Compute partial derivative Psi1, eqt (1,3) i = intRangeDoubleMatrix(0, ny - 1); j = intRangeDoubleMatrix(0, nx); ROWS = grid2D(i, j); I_J = JblasUtils.sub2ind(wrappedPhase.rows, ROWS[0], ROWS[1]); IP1_J = JblasUtils.sub2ind(wrappedPhase.rows, ROWS[0].add(1), ROWS[1]); Psi1 = JblasUtils.getMatrixFromIdx(wrappedPhase, IP1_J) .sub(JblasUtils.getMatrixFromIdx(wrappedPhase, I_J)); Psi1 = UnwrapUtils.wrapDoubleMatrix(Psi1); // Compute partial derivative Psi2, eqt (2,4) i = intRangeDoubleMatrix(0, ny); j = intRangeDoubleMatrix(0, nx - 1); ROWS = grid2D(i, j); I_J = JblasUtils.sub2ind(wrappedPhase.rows, ROWS[0], ROWS[1]); I_JP1 = JblasUtils.sub2ind(wrappedPhase.rows, ROWS[0], ROWS[1].add(1)); Psi2 = JblasUtils.getMatrixFromIdx(wrappedPhase, I_JP1) .sub(JblasUtils.getMatrixFromIdx(wrappedPhase, I_J)); Psi2 = UnwrapUtils.wrapDoubleMatrix(Psi2); // Compute beq DoubleMatrix beq = DoubleMatrix.zeros(ny, nx); i = intRangeDoubleMatrix(0, ny - 1); j = intRangeDoubleMatrix(0, nx - 1); ROWS = grid2D(i, j); I_J = JblasUtils.sub2ind(Psi1.rows, ROWS[0], ROWS[1]); I_JP1 = JblasUtils.sub2ind(Psi1.rows, ROWS[0], ROWS[1].add(1)); beq.addi(JblasUtils.getMatrixFromIdx(Psi1, I_JP1).sub(JblasUtils.getMatrixFromIdx(Psi1, I_J))); I_J = JblasUtils.sub2ind(Psi2.rows, ROWS[0], ROWS[1]); I_JP1 = JblasUtils.sub2ind(Psi2.rows, ROWS[0].add(1), ROWS[1]); beq.subi(JblasUtils.getMatrixFromIdx(Psi2, I_JP1).sub(JblasUtils.getMatrixFromIdx(Psi2, I_J))); beq.muli(-1 / (2 * Constants._PI)); for (int k = 0; k < beq.length; k++) { beq.put(k, Math.round(beq.get(k))); } beq.reshape(beq.length, 1); logger.debug("Constraint matrix"); i = intRangeDoubleMatrix(0, ny - 1); j = intRangeDoubleMatrix(0, nx - 1); ROWS = grid2D(i, j); DoubleMatrix ROW_I_J = JblasUtils.sub2ind(i.length, ROWS[0], ROWS[1]); int nS0 = nx * ny; // Use by S1p, S1m DoubleMatrix[] COLS; COLS = grid2D(i, j); DoubleMatrix COL_IJ_1 = JblasUtils.sub2ind(i.length, COLS[0], COLS[1]); COLS = grid2D(i, j.add(1)); DoubleMatrix COL_I_JP1 = JblasUtils.sub2ind(i.length, COLS[0], COLS[1]); int nS1 = (nx + 1) * (ny); // SOAPBinding.Use by S2p, S2m COLS = grid2D(i, j); DoubleMatrix COL_IJ_2 = JblasUtils.sub2ind(i.length + 1, COLS[0], COLS[1]); COLS = grid2D(i.add(1), j); DoubleMatrix COL_IP1_J = JblasUtils.sub2ind(i.length + 1, COLS[0], COLS[1]); int nS2 = nx * (ny + 1); // Equality constraint matrix (Aeq) /* S1p = + sparse(ROW_I_J, COL_I_JP1,1,nS0,nS1) ... - sparse(ROW_I_J, COL_IJ_1,1,nS0,nS1); S1m = -S1p; S2p = - sparse(ROW_I_J, COL_IP1_J,1,nS0,nS2) ... + sparse(ROW_I_J, COL_IJ_2,1,nS0,nS2); S2m = -S2p; */ // ToDo: Aeq matrix should be sparse from it's initialization, look into JblasMatrix factory for // howto // ...otherwise even a data set of eg 40x40 pixels will exhaust heap: // ... dimension of Aeq (equality constraints) matrix for 30x30 input is 1521x6240 matrix // ... dimension of Aeq ( ) matrix for 50x50 input is 2401x9800 // ... dimension of Aeq ( ) matrix for 512x512 input is 261121x1046528 DoubleMatrix S1p = JblasUtils.setUpMatrixFromIdx(nS0, nS1, ROW_I_J, COL_I_JP1) .sub(JblasUtils.setUpMatrixFromIdx(nS0, nS1, ROW_I_J, COL_IJ_1)); DoubleMatrix S1m = S1p.neg(); DoubleMatrix S2p = JblasUtils.setUpMatrixFromIdx(nS0, nS2, ROW_I_J, COL_IP1_J) .neg() .add(JblasUtils.setUpMatrixFromIdx(nS0, nS2, ROW_I_J, COL_IJ_2)); DoubleMatrix S2m = S2p.neg(); DoubleMatrix Aeq = concatHorizontally(concatHorizontally(S1p, S1m), concatHorizontally(S2p, S2m)); final int nObs = Aeq.columns; final int nUnkn = Aeq.rows; DoubleMatrix c1 = JblasUtils.getMatrixFromRange(0, ny, 0, weight.columns, weight); DoubleMatrix c2 = JblasUtils.getMatrixFromRange(0, weight.rows, 0, nx, weight); c1.reshape(c1.length, 1); c2.reshape(c2.length, 1); DoubleMatrix cost = DoubleMatrix.concatVertically( DoubleMatrix.concatVertically(c1, c1), DoubleMatrix.concatVertically(c2, c2)); logger.debug("Minimum network flow resolution"); StopWatch clockLP = new StopWatch(); LinearProgram lp = new LinearProgram(cost.data); lp.setMinProblem(true); boolean[] integerBool = new boolean[nObs]; double[] lowerBound = new double[nObs]; double[] upperBound = new double[nObs]; for (int k = 0; k < nUnkn; k++) { lp.addConstraint(new LinearEqualsConstraint(Aeq.getRow(k).toArray(), beq.get(k), "cost")); } for (int k = 0; k < nObs; k++) { integerBool[k] = true; lowerBound[k] = 0; upperBound[k] = 99999; } // setup bounds and integer nature lp.setIsinteger(integerBool); lp.setUpperbound(upperBound); lp.setLowerbound(lowerBound); LinearProgramSolver solver = SolverFactory.newDefault(); // double[] solution; // solution = solver.solve(lp); DoubleMatrix solution = new DoubleMatrix(solver.solve(lp)); clockLP.stop(); logger.debug("Total GLPK time: {} [sec]", (double) (clockLP.getElapsedTime()) / 1000); // Displatch the LP solution int offset; int[] idx1p = JblasUtils.intRangeIntArray(0, nS1 - 1); DoubleMatrix x1p = solution.get(idx1p); x1p.reshape(ny, nx + 1); offset = idx1p[nS1 - 1] + 1; int[] idx1m = JblasUtils.intRangeIntArray(offset, offset + nS1 - 1); DoubleMatrix x1m = solution.get(idx1m); x1m.reshape(ny, nx + 1); offset = idx1m[idx1m.length - 1] + 1; int[] idx2p = JblasUtils.intRangeIntArray(offset, offset + nS2 - 1); DoubleMatrix x2p = solution.get(idx2p); x2p.reshape(ny + 1, nx); offset = idx2p[idx2p.length - 1] + 1; int[] idx2m = JblasUtils.intRangeIntArray(offset, offset + nS2 - 1); DoubleMatrix x2m = solution.get(idx2m); x2m.reshape(ny + 1, nx); // Compute the derivative jumps, eqt (20,21) DoubleMatrix k1 = x1p.sub(x1m); DoubleMatrix k2 = x2p.sub(x2m); // (?) Round to integer solution if (roundK == true) { for (int idx = 0; idx < k1.length; idx++) { k1.put(idx, FastMath.floor(k1.get(idx))); } for (int idx = 0; idx < k2.length; idx++) { k2.put(idx, FastMath.floor(k2.get(idx))); } } // Sum the jumps with the wrapped partial derivatives, eqt (10,11) k1.reshape(ny, nx + 1); k2.reshape(ny + 1, nx); k1.addi(Psi1.div(Constants._TWO_PI)); k2.addi(Psi2.div(Constants._TWO_PI)); // Integrate the partial derivatives, eqt (6) // cumsum() method in JblasTester -> see cumsum_demo() in JblasTester.cumsum_demo() DoubleMatrix k2_temp = DoubleMatrix.concatHorizontally(DoubleMatrix.zeros(1), k2.getRow(0)); k2_temp = JblasUtils.cumsum(k2_temp, 1); DoubleMatrix k = DoubleMatrix.concatVertically(k2_temp, k1); k = JblasUtils.cumsum(k, 1); // Unwrap - final solution unwrappedPhase = k.mul(Constants._TWO_PI); }
private void estimateCPM() { logger.info("Start EJML Estimation"); numIterations = 0; boolean estimationDone = false; DenseMatrix64F eL_hat = null; DenseMatrix64F eP_hat = null; DenseMatrix64F rhsL = null; DenseMatrix64F rhsP = null; // normalize master coordinates for stability -- only master! TDoubleArrayList yMasterNorm = new TDoubleArrayList(); TDoubleArrayList xMasterNorm = new TDoubleArrayList(); for (int i = 0; i < yMaster.size(); i++) { yMasterNorm.add(PolyUtils.normalize2(yMaster.getQuick(i), normWin.linelo, normWin.linehi)); xMasterNorm.add(PolyUtils.normalize2(xMaster.getQuick(i), normWin.pixlo, normWin.pixhi)); } // helper variables int winL; int winP; int maxWSum_idx = 0; while (!estimationDone) { String codeBlockMessage = "LS ESTIMATION PROCEDURE"; StopWatch stopWatch = new StopWatch(); StopWatch clock = new StopWatch(); clock.start(); stopWatch.setTag(codeBlockMessage); stopWatch.start(); logger.info("Start iteration: {}" + numIterations); /** Remove identified outlier from previous estimation */ if (numIterations != 0) { logger.info( "Removing observation {}, idxList {}, from observation vector." + index.getQuick(maxWSum_idx) + maxWSum_idx); index.removeAt(maxWSum_idx); yMasterNorm.removeAt(maxWSum_idx); xMasterNorm.removeAt(maxWSum_idx); yOffset.removeAt(maxWSum_idx); xOffset.removeAt(maxWSum_idx); // only for outlier removal yMaster.removeAt(maxWSum_idx); xMaster.removeAt(maxWSum_idx); ySlave.removeAt(maxWSum_idx); xSlave.removeAt(maxWSum_idx); coherence.removeAt(maxWSum_idx); // also take care of slave pins slaveGCPList.remove(maxWSum_idx); // if (demRefinement) { // ySlaveGeometry.removeAt(maxWSum_idx); // xSlaveGeometry.removeAt(maxWSum_idx); // } } /** Check redundancy */ numObservations = index.size(); // Number of points > threshold if (numObservations < numUnknowns) { logger.severe( "coregpm: Number of windows > threshold is smaller than parameters solved for."); throw new ArithmeticException( "coregpm: Number of windows > threshold is smaller than parameters solved for."); } // work with normalized values DenseMatrix64F A = new DenseMatrix64F( SystemOfEquations.constructDesignMatrix_loop( yMasterNorm.toArray(), xMasterNorm.toArray(), cpmDegree)); logger.info("TIME FOR SETUP of SYSTEM : {}" + stopWatch.lap("setup")); RowD1Matrix64F Qy_1; // vector double meanValue; switch (cpmWeight) { case "linear": logger.info("Using sqrt(coherence) as weights"); Qy_1 = DenseMatrix64F.wrap(numObservations, 1, coherence.toArray()); // Normalize weights to avoid influence on estimated var.factor logger.info("Normalizing covariance matrix for LS estimation"); meanValue = CommonOps.elementSum(Qy_1) / numObservations; CommonOps.divide(meanValue, Qy_1); // normalize vector break; case "quadratic": logger.info("Using coherence as weights."); Qy_1 = DenseMatrix64F.wrap(numObservations, 1, coherence.toArray()); CommonOps.elementMult(Qy_1, Qy_1); // Normalize weights to avoid influence on estimated var.factor meanValue = CommonOps.elementSum(Qy_1) / numObservations; logger.info("Normalizing covariance matrix for LS estimation."); CommonOps.divide(meanValue, Qy_1); // normalize vector break; case "bamler": // TODO: see Bamler papers IGARSS 2000 and 2004 logger.warning("Bamler weighting method NOT IMPLEMENTED, falling back to None."); Qy_1 = onesEJML(numObservations); break; case "none": logger.info("No weighting."); Qy_1 = onesEJML(numObservations); break; default: Qy_1 = onesEJML(numObservations); break; } logger.info("TIME FOR SETUP of VC diag matrix: {}" + stopWatch.lap("diag VC matrix")); /** tempMatrix_1 matrices */ final DenseMatrix64F yL_matrix = DenseMatrix64F.wrap(numObservations, 1, yOffset.toArray()); final DenseMatrix64F yP_matrix = DenseMatrix64F.wrap(numObservations, 1, xOffset.toArray()); logger.info("TIME FOR SETUP of TEMP MATRICES: {}" + stopWatch.lap("Temp matrices")); /** normal matrix */ final DenseMatrix64F N = new DenseMatrix64F(numUnknowns, numUnknowns); // = A_transpose.mmul(Qy_1_diag.mmul(A)); /* // fork/join parallel implementation RowD1Matrix64F result = A.copy(); DiagXMat dd = new DiagXMat(Qy_1, A, 0, A.numRows, result); ForkJoinPool pool = new ForkJoinPool(); pool.invoke(dd); CommonOps.multAddTransA(A, dd.result, N); */ CommonOps.multAddTransA(A, diagxmat(Qy_1, A), N); DenseMatrix64F Qx_hat = N.copy(); logger.info("TIME FOR SETUP of NORMAL MATRIX: {}" + stopWatch.lap("Normal matrix")); /** right hand sides */ // azimuth rhsL = new DenseMatrix64F(numUnknowns, 1); // A_transpose.mmul(Qy_1_diag.mmul(yL_matrix)); CommonOps.multAddTransA(1d, A, diagxmat(Qy_1, yL_matrix), rhsL); // range rhsP = new DenseMatrix64F(numUnknowns, 1); // A_transpose.mmul(Qy_1_diag.mmul(yP_matrix)); CommonOps.multAddTransA(1d, A, diagxmat(Qy_1, yP_matrix), rhsP); logger.info("TIME FOR SETUP of RightHand Side: {}" + stopWatch.lap("Right-hand-side")); LinearSolver<DenseMatrix64F> solver = LinearSolverFactory.leastSquares(100, 100); /** compute solution */ if (!solver.setA(Qx_hat)) { throw new IllegalArgumentException("Singular Matrix"); } solver.solve(rhsL, rhsL); solver.solve(rhsP, rhsP); logger.info("TIME FOR SOLVING of System: {}" + stopWatch.lap("Solving System")); /** inverting of Qx_hat for stability check */ solver.invert(Qx_hat); logger.info("TIME FOR INVERSION OF N: {}" + stopWatch.lap("Inversion of N")); /** test inversion and check stability: max(abs([N*inv(N) - E)) ?= 0 */ DenseMatrix64F tempMatrix_1 = new DenseMatrix64F(N.numRows, N.numCols); CommonOps.mult(N, Qx_hat, tempMatrix_1); CommonOps.subEquals( tempMatrix_1, CommonOps.identity(tempMatrix_1.numRows, tempMatrix_1.numCols)); double maxDeviation = CommonOps.elementMaxAbs(tempMatrix_1); if (maxDeviation > .01) { logger.severe( "COREGPM: maximum deviation N*inv(N) from unity = {}. This is larger than 0.01" + maxDeviation); throw new IllegalStateException("COREGPM: maximum deviation N*inv(N) from unity)"); } else if (maxDeviation > .001) { logger.warning( "COREGPM: maximum deviation N*inv(N) from unity = {}. This is between 0.01 and 0.001" + maxDeviation); } logger.info("TIME FOR STABILITY CHECK: {}" + stopWatch.lap("Stability Check")); logger.info("Coeffs in Azimuth direction: {}" + rhsL.toString()); logger.info("Coeffs in Range direction: {}" + rhsP.toString()); logger.info("Max Deviation: {}" + maxDeviation); logger.info("System Quality: {}" + solver.quality()); /** some other stuff if the scale is okay */ DenseMatrix64F Qe_hat = new DenseMatrix64F(numObservations, numObservations); DenseMatrix64F tempMatrix_2 = new DenseMatrix64F(numObservations, numUnknowns); CommonOps.mult(A, Qx_hat, tempMatrix_2); CommonOps.multTransB(-1, tempMatrix_2, A, Qe_hat); scaleInputDiag(Qe_hat, Qy_1); // solution: Azimuth DenseMatrix64F yL_hat = new DenseMatrix64F(numObservations, 1); eL_hat = new DenseMatrix64F(numObservations, 1); CommonOps.mult(A, rhsL, yL_hat); CommonOps.sub(yL_matrix, yL_hat, eL_hat); // solution: Range DenseMatrix64F yP_hat = new DenseMatrix64F(numObservations, 1); eP_hat = new DenseMatrix64F(numObservations, 1); CommonOps.mult(A, rhsP, yP_hat); CommonOps.sub(yP_matrix, yP_hat, eP_hat); logger.info("TIME FOR DATA preparation for TESTING: {}" + stopWatch.lap("Testing Setup")); /** overal model test (variance factor) */ double overAllModelTest_L = 0; double overAllModelTest_P = 0; for (int i = 0; i < numObservations; i++) { overAllModelTest_L += FastMath.pow(eL_hat.get(i), 2) * Qy_1.get(i); overAllModelTest_P += FastMath.pow(eP_hat.get(i), 2) * Qy_1.get(i); } overAllModelTest_L = (overAllModelTest_L / FastMath.pow(SIGMA_L, 2)) / (numObservations - numUnknowns); overAllModelTest_P = (overAllModelTest_P / FastMath.pow(SIGMA_P, 2)) / (numObservations - numUnknowns); logger.info("Overall Model Test Lines: {}" + overAllModelTest_L); logger.info("Overall Model Test Pixels: {}" + overAllModelTest_P); logger.info("TIME FOR OMT: {}" + stopWatch.lap("OMT")); /** ---------------------- DATASNOPING ----------------------------------- * */ /** Assumed Qy diag */ /** initialize */ DenseMatrix64F wTest_L = new DenseMatrix64F(numObservations, 1); DenseMatrix64F wTest_P = new DenseMatrix64F(numObservations, 1); for (int i = 0; i < numObservations; i++) { wTest_L.set(i, eL_hat.get(i) / (Math.sqrt(Qe_hat.get(i, i)) * SIGMA_L)); wTest_P.set(i, eP_hat.get(i) / (Math.sqrt(Qe_hat.get(i, i)) * SIGMA_P)); } /** find maxima's */ // azimuth winL = absArgmax(wTest_L); double maxWinL = Math.abs(wTest_L.get(winL)); logger.info( "maximum wtest statistic azimuth = {} for window number: {} " + maxWinL + index.getQuick(winL)); // range winP = absArgmax(wTest_P); double maxWinP = Math.abs(wTest_P.get(winP)); logger.info( "maximum wtest statistic range = {} for window number: {} " + maxWinP + index.getQuick(winP)); /** use summed wTest in Azimuth and Range direction for outlier detection */ DenseMatrix64F wTestSum = new DenseMatrix64F(numObservations); for (int i = 0; i < numObservations; i++) { wTestSum.set(i, FastMath.pow(wTest_L.get(i), 2) + FastMath.pow(wTest_P.get(i), 2)); } maxWSum_idx = absArgmax(wTest_P); double maxWSum = wTest_P.get(winP); logger.info( "Detected outlier: summed sqr.wtest = {}; observation: {}" + maxWSum + index.getQuick(maxWSum_idx)); /** Test if we are estimationDone yet */ // check on number of observations if (numObservations <= numUnknowns) { logger.warning("NO redundancy! Exiting iterations."); estimationDone = true; // cannot remove more than this } // check on test k_alpha if (Math.max(maxWinL, maxWinP) <= criticalValue) { // all tests accepted? logger.info("All outlier tests accepted! (final solution computed)"); estimationDone = true; } if (numIterations >= maxIterations) { logger.info("max. number of iterations reached (exiting loop)."); estimationDone = true; // we reached max. (or no max_iter specified) } /** Only warn if last iteration has been estimationDone */ if (estimationDone) { if (overAllModelTest_L > 10) { logger.warning( "COREGPM: Overall Model Test, Lines = {} is larger than 10. (Suggest model or a priori sigma not correct.)" + overAllModelTest_L); } if (overAllModelTest_P > 10) { logger.warning( "COREGPM: Overall Model Test, Pixels = {} is larger than 10. (Suggest model or a priori sigma not correct.)" + overAllModelTest_P); } /** if a priori sigma is correct, max wtest should be something like 1.96 */ if (Math.max(maxWinL, maxWinP) > 200.0) { logger.warning( "Recommendation: remove window number: {} and re-run step COREGPM. max. wtest is: {}." + index.get(winL) + Math.max(maxWinL, maxWinP)); } } logger.info("TIME FOR wTestStatistics: {}" + stopWatch.lap("WTEST")); logger.info("Total Estimation TIME: {}" + clock.getElapsedTime()); numIterations++; // update counter here! } // only warn when iterating yError = eL_hat.getData(); xError = eP_hat.getData(); yCoef = rhsL.getData(); xCoef = rhsP.getData(); }