コード例 #1
0
  /**
   * set the active center for this molecule. The active center will be those which correspond with
   * [A*]-B=C .
   *
   * <pre>
   * A: Atom with single electron
   * -: Single bond
   * B: Atom
   * =: Double bond
   * C: Atom
   *  </pre>
   *
   * @param reactant The molecule to set the activity
   * @throws CDKException
   */
  private void setActiveCenters(IAtomContainer reactant) throws CDKException {
    if (AtomContainerManipulator.getTotalNegativeFormalCharge(reactant)
        != 0 /*|| AtomContainerManipulator.getTotalPositiveFormalCharge(reactant) != 0*/) return;
    Iterator<IAtom> atoms = reactant.atoms().iterator();
    while (atoms.hasNext()) {
      IAtom atomi = atoms.next();
      if (reactant.getConnectedSingleElectronsCount(atomi) == 1) {

        Iterator<IBond> bondis = reactant.getConnectedBondsList(atomi).iterator();

        while (bondis.hasNext()) {
          IBond bondi = bondis.next();

          if (bondi.getOrder() == IBond.Order.SINGLE) {

            IAtom atomj = bondi.getConnectedAtom(atomi);
            if ((atomj.getFormalCharge() == CDKConstants.UNSET ? 0 : atomj.getFormalCharge()) == 0
                && reactant.getConnectedSingleElectronsCount(atomj) == 0) {

              Iterator<IBond> bondjs = reactant.getConnectedBondsList(atomj).iterator();
              while (bondjs.hasNext()) {
                IBond bondj = bondjs.next();

                if (bondj.equals(bondi)) continue;

                if (bondj.getOrder() == IBond.Order.DOUBLE) {

                  IAtom atomk = bondj.getConnectedAtom(atomj);
                  if ((atomk.getFormalCharge() == CDKConstants.UNSET ? 0 : atomk.getFormalCharge())
                          == 0
                      && reactant.getConnectedSingleElectronsCount(atomk) == 0) {

                    atomi.setFlag(CDKConstants.REACTIVE_CENTER, true);
                    atomj.setFlag(CDKConstants.REACTIVE_CENTER, true);
                    atomk.setFlag(CDKConstants.REACTIVE_CENTER, true);
                    bondi.setFlag(CDKConstants.REACTIVE_CENTER, true);
                    bondj.setFlag(CDKConstants.REACTIVE_CENTER, true);
                  }
                }
              }
            }
          }
        }
      }
    }
  }
  /**
   * set the active center for this molecule. The active center will be those which correspond with
   * A-B-[C*].
   *
   * <pre>
   * A: Atom
   * -: bond
   * B: Atom
   * -: bond
   * C: Atom with single electron
   *  </pre>
   *
   * @param reactant The molecule to set the activity
   * @throws CDKException
   */
  private void setActiveCenters(IMolecule reactant) throws CDKException {

    Iterator<IAtom> atoms = reactant.atoms().iterator();
    while (atoms.hasNext()) {
      IAtom atomi = atoms.next();
      if (reactant.getConnectedSingleElectronsCount(atomi) == 1 && atomi.getFormalCharge() == 1) {

        Iterator<IBond> bondis = reactant.getConnectedBondsList(atomi).iterator();

        while (bondis.hasNext()) {
          IBond bondi = bondis.next();

          if (bondi.getOrder() == IBond.Order.SINGLE) {

            IAtom atomj = bondi.getConnectedAtom(atomi);
            if (atomj.getFormalCharge() == 0) {

              Iterator<IBond> bondjs = reactant.getConnectedBondsList(atomj).iterator();
              while (bondjs.hasNext()) {
                IBond bondj = bondjs.next();

                if (bondj.equals(bondi)) continue;

                if (bondj.getOrder() == IBond.Order.SINGLE) {

                  IAtom atomk = bondj.getConnectedAtom(atomj);
                  if (atomk.getSymbol().equals("C") && atomk.getFormalCharge() == 0) {
                    atomi.setFlag(CDKConstants.REACTIVE_CENTER, true);
                    atomj.setFlag(CDKConstants.REACTIVE_CENTER, true);
                    atomk.setFlag(CDKConstants.REACTIVE_CENTER, true);
                    bondi.setFlag(CDKConstants.REACTIVE_CENTER, true);
                    bondj.setFlag(CDKConstants.REACTIVE_CENTER, true);
                  }
                }
              }
            }
          }
        }
      }
    }
  }
コード例 #3
0
ファイル: CDKToBeamTest.java プロジェクト: jaypat87/cdk
 @SuppressWarnings("unchecked")
 @Test
 public void aromaticBond() throws Exception {
   IAtom u = mock(IAtom.class);
   IAtom v = mock(IAtom.class);
   IBond b = new Bond(u, v);
   b.setFlag(CDKConstants.ISAROMATIC, true);
   Map<IAtom, Integer> mock = mock(Map.class);
   when(mock.get(u)).thenReturn(0);
   when(mock.get(v)).thenReturn(1);
   CDKToBeam c2g = new CDKToBeam();
   assertThat(c2g.toBeamEdge(b, mock), is(uk.ac.ebi.beam.Bond.AROMATIC.edge(0, 1)));
 }
コード例 #4
0
  /** A unit test for JUnit with Benzene */
  @Test
  public void testPartialTotalChargeDescriptor_Benzene()
      throws ClassNotFoundException, CDKException, java.lang.Exception {
    double[] testResult = {
      -0.15, -0.15, -0.15, -0.15, -0.15, -0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15
    }; /* from Merck Molecular Force Field. II. Thomas A. Halgren*/
    IAtomicDescriptor descriptor = new PartialTChargeMMFF94Descriptor();

    //		IMolecule mol = sp.parseSmiles("c1ccccc1");
    IMolecule mol = builder.newInstance(IMolecule.class);
    for (int i = 0; i < 6; i++) {
      IAtom carbon = builder.newInstance(IAtom.class, Elements.CARBON);
      carbon.setFlag(CDKConstants.ISAROMATIC, true);
      // making sure the order matches the test results
      mol.addAtom(carbon);
    }
    IBond ringBond =
        builder.newInstance(
            IBond.class, mol.getAtom(0), mol.getAtom(1), CDKConstants.BONDORDER_DOUBLE);
    ringBond.setFlag(CDKConstants.ISAROMATIC, true);
    mol.addBond(ringBond);
    ringBond =
        builder.newInstance(
            IBond.class, mol.getAtom(1), mol.getAtom(2), CDKConstants.BONDORDER_SINGLE);
    ringBond.setFlag(CDKConstants.ISAROMATIC, true);
    mol.addBond(ringBond);
    ringBond =
        builder.newInstance(
            IBond.class, mol.getAtom(2), mol.getAtom(3), CDKConstants.BONDORDER_DOUBLE);
    ringBond.setFlag(CDKConstants.ISAROMATIC, true);
    mol.addBond(ringBond);
    ringBond =
        builder.newInstance(
            IBond.class, mol.getAtom(3), mol.getAtom(4), CDKConstants.BONDORDER_SINGLE);
    ringBond.setFlag(CDKConstants.ISAROMATIC, true);
    mol.addBond(ringBond);
    ringBond =
        builder.newInstance(
            IBond.class, mol.getAtom(4), mol.getAtom(5), CDKConstants.BONDORDER_DOUBLE);
    ringBond.setFlag(CDKConstants.ISAROMATIC, true);
    mol.addBond(ringBond);
    ringBond =
        builder.newInstance(
            IBond.class, mol.getAtom(5), mol.getAtom(0), CDKConstants.BONDORDER_SINGLE);
    ringBond.setFlag(CDKConstants.ISAROMATIC, true);
    mol.addBond(ringBond);
    addExplicitHydrogens(mol);

    for (int i = 0; i < 12; i++) {
      double result =
          ((DoubleResult) descriptor.calculate(mol.getAtom(i), mol).getValue()).doubleValue();
      Assert.assertEquals(testResult[i], result, METHOD_ERROR);
    }
  }
コード例 #5
0
 /**
  * set the active center for this molecule. The active center will be those which correspond with
  * A-B. If the bond is simple, it will be broken forming two fragments
  *
  * <pre>
  * A: Atom
  * #/=/-: bond
  * B: Atom
  *  </pre>
  *
  * @param reactant The molecule to set the activity
  * @throws CDKException
  */
 private void setActiveCenters(IMolecule reactant) throws CDKException {
   Iterator<IBond> bonds = reactant.bonds().iterator();
   while (bonds.hasNext()) {
     IBond bond = bonds.next();
     IAtom atom1 = bond.getAtom(0);
     IAtom atom2 = bond.getAtom(1);
     if (bond.getOrder() != IBond.Order.SINGLE
         && (atom1.getFormalCharge() == CDKConstants.UNSET ? 0 : atom1.getFormalCharge()) == 0
         && (atom2.getFormalCharge() == CDKConstants.UNSET ? 0 : atom2.getFormalCharge()) == 0
         && reactant.getConnectedSingleElectronsCount(atom1) == 0
         && reactant.getConnectedSingleElectronsCount(atom2) == 0) {
       atom1.setFlag(CDKConstants.REACTIVE_CENTER, true);
       atom2.setFlag(CDKConstants.REACTIVE_CENTER, true);
       bond.setFlag(CDKConstants.REACTIVE_CENTER, true);
     }
   }
 }
コード例 #6
0
  @Test
  public void getAromaticEdgeLabelTest() {
    IAtomContainer benzeneRing = builder.newInstance(IAtomContainer.class);
    for (int i = 0; i < 6; i++) {
      benzeneRing.addAtom(builder.newInstance(IAtom.class, "C"));
    }
    for (int i = 0; i < 6; i++) {
      IAtom a = benzeneRing.getAtom(i);
      IAtom b = benzeneRing.getAtom((i + 1) % 6);
      IBond bond = builder.newInstance(IBond.class, a, b);
      benzeneRing.addBond(bond);
      bond.setFlag(CDKConstants.ISAROMATIC, true);
    }

    MoleculeSignature molSignature = new MoleculeSignature(benzeneRing);
    System.out.println("" + molSignature.toFullString());
    List<AbstractVertexSignature> signatures = molSignature.getVertexSignatures();
    for (AbstractVertexSignature signature : signatures) {
      for (int i = 0; i < 6; i++) {
        Assert.assertEquals(
            "Failed for " + i, "p", ((AtomSignature) signature).getEdgeLabel(i, (i + 1) % 6));
      }
    }
  }
コード例 #7
0
 /** @throws BioclipseException */
 private void calculateInchi() throws BioclipseException {
   try {
     IAtomContainer clone = (IAtomContainer) getAtomContainer().clone();
     // remove aromaticity flags
     for (IAtom atom : clone.atoms()) atom.setFlag(CDKConstants.ISAROMATIC, false);
     for (IBond bond : clone.bonds()) bond.setFlag(CDKConstants.ISAROMATIC, false);
     if (factory == null) {
       factory = InChIGeneratorFactory.getInstance();
     }
     InChIGenerator gen = factory.getInChIGenerator(clone);
     INCHI_RET status = gen.getReturnStatus();
     if (status == INCHI_RET.OKAY || status == INCHI_RET.WARNING) {
       InChI inchi = new InChI();
       inchi.setValue(gen.getInchi());
       inchi.setKey(gen.getInchiKey());
       cachedInchi = inchi;
     } else {
       throw new InvalidParameterException(
           "Error while generating InChI (" + status + "): " + gen.getMessage());
     }
   } catch (Exception e) {
     throw new BioclipseException("Could not create InChI: " + e.getMessage(), e);
   }
 }
コード例 #8
0
ファイル: SMARTSQueryTool.java プロジェクト: eoc21/cdk
  /**
   * Prepare the target molecule for analysis.
   *
   * <p>We perform ring perception and aromaticity detection and set up the appropriate properties.
   * Right now, this function is called each time we need to do a query and this is inefficient.
   *
   * @throws CDKException if there is a problem in ring perception or aromaticity detection, which
   *     is usually related to a timeout in the ring finding code.
   */
  private void initializeMolecule() throws CDKException {
    // Code copied from
    // org.openscience.cdk.qsar.descriptors.atomic.AtomValenceDescriptor;
    Map<String, Integer> valencesTable = new HashMap<String, Integer>();
    valencesTable.put("H", 1);
    valencesTable.put("Li", 1);
    valencesTable.put("Be", 2);
    valencesTable.put("B", 3);
    valencesTable.put("C", 4);
    valencesTable.put("N", 5);
    valencesTable.put("O", 6);
    valencesTable.put("F", 7);
    valencesTable.put("Na", 1);
    valencesTable.put("Mg", 2);
    valencesTable.put("Al", 3);
    valencesTable.put("Si", 4);
    valencesTable.put("P", 5);
    valencesTable.put("S", 6);
    valencesTable.put("Cl", 7);
    valencesTable.put("K", 1);
    valencesTable.put("Ca", 2);
    valencesTable.put("Ga", 3);
    valencesTable.put("Ge", 4);
    valencesTable.put("As", 5);
    valencesTable.put("Se", 6);
    valencesTable.put("Br", 7);
    valencesTable.put("Rb", 1);
    valencesTable.put("Sr", 2);
    valencesTable.put("In", 3);
    valencesTable.put("Sn", 4);
    valencesTable.put("Sb", 5);
    valencesTable.put("Te", 6);
    valencesTable.put("I", 7);
    valencesTable.put("Cs", 1);
    valencesTable.put("Ba", 2);
    valencesTable.put("Tl", 3);
    valencesTable.put("Pb", 4);
    valencesTable.put("Bi", 5);
    valencesTable.put("Po", 6);
    valencesTable.put("At", 7);
    valencesTable.put("Fr", 1);
    valencesTable.put("Ra", 2);
    valencesTable.put("Cu", 2);
    valencesTable.put("Mn", 2);
    valencesTable.put("Co", 2);

    // do all ring perception
    AllRingsFinder arf = new AllRingsFinder();
    IRingSet allRings;
    try {
      allRings = arf.findAllRings(atomContainer);
    } catch (CDKException e) {
      logger.debug(e.toString());
      throw new CDKException(e.toString(), e);
    }

    // sets SSSR information
    SSSRFinder finder = new SSSRFinder(atomContainer);
    IRingSet sssr = finder.findEssentialRings();

    for (IAtom atom : atomContainer.atoms()) {

      // add a property to each ring atom that will be an array of
      // Integers, indicating what size ring the given atom belongs to
      // Add SSSR ring counts
      if (allRings.contains(atom)) { // it's in a ring
        atom.setFlag(CDKConstants.ISINRING, true);
        // lets find which ring sets it is a part of
        List<Integer> ringsizes = new ArrayList<Integer>();
        IRingSet currentRings = allRings.getRings(atom);
        int min = 0;
        for (int i = 0; i < currentRings.getAtomContainerCount(); i++) {
          int size = currentRings.getAtomContainer(i).getAtomCount();
          if (min > size) min = size;
          ringsizes.add(size);
        }
        atom.setProperty(CDKConstants.RING_SIZES, ringsizes);
        atom.setProperty(CDKConstants.SMALLEST_RINGS, sssr.getRings(atom));
      } else {
        atom.setFlag(CDKConstants.ISINRING, false);
      }

      // determine how many rings bonds each atom is a part of
      int hCount;
      if (atom.getImplicitHydrogenCount() == CDKConstants.UNSET) hCount = 0;
      else hCount = atom.getImplicitHydrogenCount();

      List<IAtom> connectedAtoms = atomContainer.getConnectedAtomsList(atom);
      int total = hCount + connectedAtoms.size();
      for (IAtom connectedAtom : connectedAtoms) {
        if (connectedAtom.getSymbol().equals("H")) {
          hCount++;
        }
      }
      atom.setProperty(CDKConstants.TOTAL_CONNECTIONS, total);
      atom.setProperty(CDKConstants.TOTAL_H_COUNT, hCount);

      if (valencesTable.get(atom.getSymbol()) != null) {
        int formalCharge =
            atom.getFormalCharge() == CDKConstants.UNSET ? 0 : atom.getFormalCharge();
        atom.setValency(valencesTable.get(atom.getSymbol()) - formalCharge);
      }
    }

    for (IBond bond : atomContainer.bonds()) {
      if (allRings.getRings(bond).getAtomContainerCount() > 0) {
        bond.setFlag(CDKConstants.ISINRING, true);
      }
    }

    for (IAtom atom : atomContainer.atoms()) {
      List<IAtom> connectedAtoms = atomContainer.getConnectedAtomsList(atom);

      int counter = 0;
      IAtom any;
      for (IAtom connectedAtom : connectedAtoms) {
        any = connectedAtom;
        if (any.getFlag(CDKConstants.ISINRING)) {
          counter++;
        }
      }
      atom.setProperty(CDKConstants.RING_CONNECTIONS, counter);
    }

    // check for atomaticity
    try {
      AtomContainerManipulator.percieveAtomTypesAndConfigureAtoms(atomContainer);
      CDKHueckelAromaticityDetector.detectAromaticity(atomContainer);
    } catch (CDKException e) {
      logger.debug(e.toString());
      throw new CDKException(e.toString(), e);
    }
  }
コード例 #9
0
  @TestMethod(value = "testCalculate_IAtomContainer")
  public DescriptorValue calculate(
      IAtom atom, IAtomContainer atomContainer, IRingSet precalculatedringset) {
    IAtomContainer varAtomContainer;
    try {
      varAtomContainer = (IAtomContainer) atomContainer.clone();
    } catch (CloneNotSupportedException e) {
      return getDummyDescriptorValue(e);
    }

    int atomPosition = atomContainer.getAtomNumber(atom);
    IAtom clonedAtom = varAtomContainer.getAtom(atomPosition);

    DoubleArrayResult rdfProtonCalculatedValues = new DoubleArrayResult(gsr_desc_length);
    if (!atom.getSymbol().equals("H")) {
      return getDummyDescriptorValue(new CDKException("Invalid atom specified"));
    }

    ///////////////////////// FIRST SECTION OF MAIN METHOD: DEFINITION OF MAIN VARIABLES
    ///////////////////////// AND AROMATICITY AND PI-SYSTEM AND RINGS DETECTION

    Molecule mol = new Molecule(varAtomContainer);
    if (varAtomContainer != acold) {
      acold = varAtomContainer;
      // DETECTION OF pi SYSTEMS
      varAtomContainerSet = ConjugatedPiSystemsDetector.detect(mol);
      if (precalculatedringset == null)
        try {
          varRingSet = (new AllRingsFinder()).findAllRings(varAtomContainer);
        } catch (CDKException e) {
          return getDummyDescriptorValue(e);
        }
      else varRingSet = precalculatedringset;
      try {
        GasteigerMarsiliPartialCharges peoe = new GasteigerMarsiliPartialCharges();
        peoe.assignGasteigerMarsiliSigmaPartialCharges(mol, true);
      } catch (Exception ex1) {
        return getDummyDescriptorValue(ex1);
      }
    }
    if (checkAromaticity) {
      try {
        AtomContainerManipulator.percieveAtomTypesAndConfigureAtoms(varAtomContainer);
        CDKHueckelAromaticityDetector.detectAromaticity(varAtomContainer);
      } catch (CDKException e) {
        return getDummyDescriptorValue(e);
      }
    }
    IRingSet rsAtom;
    Ring ring;
    IRingSet ringsWithThisBond;
    // SET ISINRING FLAGS FOR BONDS
    Iterator<IBond> bondsInContainer = varAtomContainer.bonds().iterator();
    while (bondsInContainer.hasNext()) {
      IBond bond = bondsInContainer.next();
      ringsWithThisBond = varRingSet.getRings(bond);
      if (ringsWithThisBond.getAtomContainerCount() > 0) {
        bond.setFlag(CDKConstants.ISINRING, true);
      }
    }

    // SET ISINRING FLAGS FOR ATOMS
    IRingSet ringsWithThisAtom;

    for (int w = 0; w < varAtomContainer.getAtomCount(); w++) {
      ringsWithThisAtom = varRingSet.getRings(varAtomContainer.getAtom(w));
      if (ringsWithThisAtom.getAtomContainerCount() > 0) {
        varAtomContainer.getAtom(w).setFlag(CDKConstants.ISINRING, true);
      }
    }

    IAtomContainer detected = varAtomContainerSet.getAtomContainer(0);

    // neighboors[0] is the atom joined to the target proton:
    List<IAtom> neighboors = mol.getConnectedAtomsList(clonedAtom);
    IAtom neighbour0 = neighboors.get(0);

    // 2', 3', 4', 5', 6', and 7' atoms up to the target are detected:
    List<IAtom> atomsInSecondSphere = mol.getConnectedAtomsList(neighbour0);
    List<IAtom> atomsInThirdSphere;
    List<IAtom> atomsInFourthSphere;
    List<IAtom> atomsInFifthSphere;
    List<IAtom> atomsInSixthSphere;
    List<IAtom> atomsInSeventhSphere;

    // SOME LISTS ARE CREATED FOR STORING OF INTERESTING ATOMS AND BONDS DURING DETECTION
    ArrayList<Integer> singles = new ArrayList<Integer>(); // list of any bond not rotatable
    ArrayList<Integer> doubles = new ArrayList<Integer>(); // list with only double bonds
    ArrayList<Integer> atoms = new ArrayList<Integer>(); // list with all the atoms in spheres
    // atoms.add( Integer.valueOf( mol.getAtomNumber(neighboors[0]) ) );
    ArrayList<Integer> bondsInCycloex =
        new ArrayList<Integer>(); // list for bonds in cycloexane-like rings

    // 2', 3', 4', 5', 6', and 7' bonds up to the target are detected:
    IBond secondBond; // (remember that first bond is proton bond)
    IBond thirdBond; //
    IBond fourthBond; //
    IBond fifthBond; //
    IBond sixthBond; //
    IBond seventhBond; //

    // definition of some variables used in the main FOR loop for detection of interesting atoms and
    // bonds:
    boolean theBondIsInA6MemberedRing; // this is like a flag for bonds which are in cycloexane-like
    // rings (rings with more than 4 at.)
    IBond.Order bondOrder;
    int bondNumber;
    int sphere;

    // THIS MAIN FOR LOOP DETECT RIGID BONDS IN 7 SPHERES:
    for (IAtom curAtomSecond : atomsInSecondSphere) {
      secondBond = mol.getBond(neighbour0, curAtomSecond);
      if (mol.getAtomNumber(curAtomSecond) != atomPosition
          && getIfBondIsNotRotatable(mol, secondBond, detected)) {
        sphere = 2;
        bondOrder = secondBond.getOrder();
        bondNumber = mol.getBondNumber(secondBond);
        theBondIsInA6MemberedRing = false;
        checkAndStore(
            bondNumber,
            bondOrder,
            singles,
            doubles,
            bondsInCycloex,
            mol.getAtomNumber(curAtomSecond),
            atoms,
            sphere,
            theBondIsInA6MemberedRing);
        atomsInThirdSphere = mol.getConnectedAtomsList(curAtomSecond);
        if (atomsInThirdSphere.size() > 0) {
          for (IAtom curAtomThird : atomsInThirdSphere) {
            thirdBond = mol.getBond(curAtomThird, curAtomSecond);
            // IF THE ATOMS IS IN THE THIRD SPHERE AND IN A CYCLOEXANE-LIKE RING, IT IS STORED IN
            // THE PROPER LIST:
            if (mol.getAtomNumber(curAtomThird) != atomPosition
                && getIfBondIsNotRotatable(mol, thirdBond, detected)) {
              sphere = 3;
              bondOrder = thirdBond.getOrder();
              bondNumber = mol.getBondNumber(thirdBond);
              theBondIsInA6MemberedRing = false;

              // if the bond is in a cyclohexane-like ring (a ring with 5 or more atoms, not
              // aromatic)
              // the boolean "theBondIsInA6MemberedRing" is set to true
              if (!thirdBond.getFlag(CDKConstants.ISAROMATIC)) {
                if (!curAtomThird.equals(neighbour0)) {
                  rsAtom = varRingSet.getRings(thirdBond);
                  for (int f = 0; f < rsAtom.getAtomContainerCount(); f++) {
                    ring = (Ring) rsAtom.getAtomContainer(f);
                    if (ring.getRingSize() > 4 && ring.contains(thirdBond)) {
                      theBondIsInA6MemberedRing = true;
                    }
                  }
                }
              }
              checkAndStore(
                  bondNumber,
                  bondOrder,
                  singles,
                  doubles,
                  bondsInCycloex,
                  mol.getAtomNumber(curAtomThird),
                  atoms,
                  sphere,
                  theBondIsInA6MemberedRing);
              theBondIsInA6MemberedRing = false;
              atomsInFourthSphere = mol.getConnectedAtomsList(curAtomThird);
              if (atomsInFourthSphere.size() > 0) {
                for (IAtom curAtomFourth : atomsInFourthSphere) {
                  fourthBond = mol.getBond(curAtomThird, curAtomFourth);
                  if (mol.getAtomNumber(curAtomFourth) != atomPosition
                      && getIfBondIsNotRotatable(mol, fourthBond, detected)) {
                    sphere = 4;
                    bondOrder = fourthBond.getOrder();
                    bondNumber = mol.getBondNumber(fourthBond);
                    theBondIsInA6MemberedRing = false;
                    checkAndStore(
                        bondNumber,
                        bondOrder,
                        singles,
                        doubles,
                        bondsInCycloex,
                        mol.getAtomNumber(curAtomFourth),
                        atoms,
                        sphere,
                        theBondIsInA6MemberedRing);
                    atomsInFifthSphere = mol.getConnectedAtomsList(curAtomFourth);
                    if (atomsInFifthSphere.size() > 0) {
                      for (IAtom curAtomFifth : atomsInFifthSphere) {
                        fifthBond = mol.getBond(curAtomFifth, curAtomFourth);
                        if (mol.getAtomNumber(curAtomFifth) != atomPosition
                            && getIfBondIsNotRotatable(mol, fifthBond, detected)) {
                          sphere = 5;
                          bondOrder = fifthBond.getOrder();
                          bondNumber = mol.getBondNumber(fifthBond);
                          theBondIsInA6MemberedRing = false;
                          checkAndStore(
                              bondNumber,
                              bondOrder,
                              singles,
                              doubles,
                              bondsInCycloex,
                              mol.getAtomNumber(curAtomFifth),
                              atoms,
                              sphere,
                              theBondIsInA6MemberedRing);
                          atomsInSixthSphere = mol.getConnectedAtomsList(curAtomFifth);
                          if (atomsInSixthSphere.size() > 0) {
                            for (IAtom curAtomSixth : atomsInSixthSphere) {
                              sixthBond = mol.getBond(curAtomFifth, curAtomSixth);
                              if (mol.getAtomNumber(curAtomSixth) != atomPosition
                                  && getIfBondIsNotRotatable(mol, sixthBond, detected)) {
                                sphere = 6;
                                bondOrder = sixthBond.getOrder();
                                bondNumber = mol.getBondNumber(sixthBond);
                                theBondIsInA6MemberedRing = false;
                                checkAndStore(
                                    bondNumber,
                                    bondOrder,
                                    singles,
                                    doubles,
                                    bondsInCycloex,
                                    mol.getAtomNumber(curAtomSixth),
                                    atoms,
                                    sphere,
                                    theBondIsInA6MemberedRing);
                                atomsInSeventhSphere = mol.getConnectedAtomsList(curAtomSixth);
                                if (atomsInSeventhSphere.size() > 0) {
                                  for (IAtom curAtomSeventh : atomsInSeventhSphere) {
                                    seventhBond = mol.getBond(curAtomSeventh, curAtomSixth);
                                    if (mol.getAtomNumber(curAtomSeventh) != atomPosition
                                        && getIfBondIsNotRotatable(mol, seventhBond, detected)) {
                                      sphere = 7;
                                      bondOrder = seventhBond.getOrder();
                                      bondNumber = mol.getBondNumber(seventhBond);
                                      theBondIsInA6MemberedRing = false;
                                      checkAndStore(
                                          bondNumber,
                                          bondOrder,
                                          singles,
                                          doubles,
                                          bondsInCycloex,
                                          mol.getAtomNumber(curAtomSeventh),
                                          atoms,
                                          sphere,
                                          theBondIsInA6MemberedRing);
                                    }
                                  }
                                }
                              }
                            }
                          }
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }

    // Variables
    double[] values; // for storage of results of other methods
    double distance;
    double sum;
    double smooth = -20;
    double partial;
    int position;
    double limitInf;
    double limitSup;
    double step;

    //////////////////////// THE FOUTH DESCRIPTOR IS gS(r), WHICH TAKES INTO ACCOUNT SINGLE BONDS IN
    // RIGID SYSTEMS

    Vector3d a_a = new Vector3d();
    Vector3d a_b = new Vector3d();
    Vector3d b_a = new Vector3d();
    Vector3d b_b = new Vector3d();
    Point3d middlePoint = new Point3d();
    double angle = 0;

    if (singles.size() > 0) {
      double dist0;
      double dist1;
      IAtom singleBondAtom0;
      IAtom singleBondAtom1;
      distance = 0;
      position = 0;
      IBond theSingleBond = null;
      limitInf = 0;
      limitSup = Math.PI / 2;
      step = (limitSup - limitInf) / 7;
      smooth = -1.15;
      int counter = 0;
      for (double ghs = 0; ghs < limitSup; ghs = ghs + step) {
        sum = 0;
        for (int sing = 0; sing < singles.size(); sing++) {
          angle = 0;
          partial = 0;
          Integer thisSingleBond = singles.get(sing);
          position = thisSingleBond;
          theSingleBond = mol.getBond(position);
          middlePoint = theSingleBond.get3DCenter();
          singleBondAtom0 = theSingleBond.getAtom(0);
          singleBondAtom1 = theSingleBond.getAtom(1);
          dist0 = calculateDistanceBetweenTwoAtoms(singleBondAtom0, atom);
          dist1 = calculateDistanceBetweenTwoAtoms(singleBondAtom1, atom);

          a_a.set(middlePoint.x, middlePoint.y, middlePoint.z);
          if (dist1 > dist0)
            a_b.set(
                singleBondAtom0.getPoint3d().x,
                singleBondAtom0.getPoint3d().y,
                singleBondAtom0.getPoint3d().z);
          else
            a_b.set(
                singleBondAtom1.getPoint3d().x,
                singleBondAtom1.getPoint3d().y,
                singleBondAtom1.getPoint3d().z);
          b_a.set(middlePoint.x, middlePoint.y, middlePoint.z);
          b_b.set(atom.getPoint3d().x, atom.getPoint3d().y, atom.getPoint3d().z);

          values = calculateDistanceBetweenAtomAndBond(atom, theSingleBond);

          angle = calculateAngleBetweenTwoLines(a_a, a_b, b_a, b_b);
          // System.out.println("ANGLe: "+angle+ " "+ mol.getAtomNumber(atomsInSingleBond[0]) +" "
          // +mol.getAtomNumber(atomsInSingleBond[1]));

          partial =
              (1 / (Math.pow(values[0], 2))) * Math.exp(smooth * (Math.pow((ghs - angle), 2)));
          sum += partial;
        }
        // gSr_function.add(new Double(sum));
        rdfProtonCalculatedValues.add(sum);
        logger.debug("RDF gSr prob.: " + sum + " at distance " + ghs);
        counter++;
      }
    } else {
      return getDummyDescriptorValue(new CDKException("Some error occurred. Please report"));
    }
    return new DescriptorValue(
        getSpecification(),
        getParameterNames(),
        getParameters(),
        rdfProtonCalculatedValues,
        getDescriptorNames());
  }
  /**
   * Search if the setOfAtomContainer contains the atomContainer
   *
   * @param set ISetOfAtomContainer object where to search
   * @param atomContainer IAtomContainer to search
   * @return True, if the atomContainer is contained
   */
  private boolean existAC(IAtomContainerSet set, IAtomContainer atomContainer) {

    IAtomContainer acClone = null;
    try {
      acClone = (IMolecule) atomContainer.clone();
      if (!lookingSymmetry) {
        /*remove all aromatic flags*/
        for (IAtom atom : acClone.atoms()) atom.setFlag(CDKConstants.ISAROMATIC, false);
        for (IBond bond : acClone.bonds()) bond.setFlag(CDKConstants.ISAROMATIC, false);
      }
    } catch (CloneNotSupportedException e1) {
      e1.printStackTrace();
    }

    for (int i = 0; i < acClone.getAtomCount(); i++)
      //			if(acClone.getAtom(i).getID() == null)
      acClone.getAtom(i).setID("" + acClone.getAtomNumber(acClone.getAtom(i)));

    if (lookingSymmetry) {
      try {
        CDKHueckelAromaticityDetector.detectAromaticity(acClone);
      } catch (CDKException e) {
        e.printStackTrace();
      }
    } else {
      if (!lookingSymmetry) {
        /*remove all aromatic flags*/
        for (IAtom atom : acClone.atoms()) atom.setFlag(CDKConstants.ISAROMATIC, false);
        for (IBond bond : acClone.bonds()) bond.setFlag(CDKConstants.ISAROMATIC, false);
      }
    }
    for (int i = 0; i < set.getAtomContainerCount(); i++) {
      IAtomContainer ss = set.getAtomContainer(i);
      for (int j = 0; j < ss.getAtomCount(); j++)
        //				if(ss.getAtom(j).getID() == null)
        ss.getAtom(j).setID("" + ss.getAtomNumber(ss.getAtom(j)));

      try {

        if (!lookingSymmetry) {
          QueryAtomContainer qAC =
              QueryAtomContainerCreator.createSymbolChargeIDQueryContainer(acClone);
          if (UniversalIsomorphismTester.isIsomorph(ss, qAC)) {
            QueryAtomContainer qAC2 =
                QueryAtomContainerCreator.createSymbolAndBondOrderQueryContainer(acClone);
            if (UniversalIsomorphismTester.isIsomorph(ss, qAC2)) return true;
          }
        } else {
          QueryAtomContainer qAC =
              QueryAtomContainerCreator.createSymbolAndChargeQueryContainer(acClone);
          CDKHueckelAromaticityDetector.detectAromaticity(ss);
          if (UniversalIsomorphismTester.isIsomorph(ss, qAC)) return true;
        }

      } catch (CDKException e1) {
        System.err.println(e1);
        logger.error(e1.getMessage());
        logger.debug(e1);
      }
    }
    return false;
  }
コード例 #11
0
ファイル: MDLV2000Reader.java プロジェクト: scootermorris/cdk
  /**
   * Read an IAtomContainer from a file in MDL sd format
   *
   * @return The Molecule that was read from the MDL file.
   */
  private IAtomContainer readAtomContainer(IAtomContainer molecule) throws CDKException {
    logger.debug("Reading new molecule");
    IAtomContainer outputContainer = null;
    int linecount = 0;
    int atoms = 0;
    int bonds = 0;
    int atom1 = 0;
    int atom2 = 0;
    int order = 0;
    IBond.Stereo stereo = (IBond.Stereo) CDKConstants.UNSET;
    int RGroupCounter = 1;
    int Rnumber = 0;
    String[] rGroup = null;
    double x = 0.0;
    double y = 0.0;
    double z = 0.0;
    double totalX = 0.0;
    double totalY = 0.0;
    double totalZ = 0.0;
    String title = null;
    String remark = null;
    // int[][] conMat = new int[0][0];
    // String help;
    IAtom atom;
    String line = "";
    // A map to keep track of R# atoms so that RGP line can be parsed
    Map<Integer, IPseudoAtom> rAtoms = new HashMap<Integer, IPseudoAtom>();

    try {
      IsotopeFactory isotopeFactory = Isotopes.getInstance();

      logger.info("Reading header");
      line = input.readLine();
      linecount++;
      if (line == null) {
        return null;
      }
      logger.debug("Line " + linecount + ": " + line);

      if (line.startsWith("$$$$")) {
        logger.debug("File is empty, returning empty molecule");
        return molecule;
      }
      if (line.length() > 0) {
        title = line;
      }
      line = input.readLine();
      linecount++;
      logger.debug("Line " + linecount + ": " + line);
      line = input.readLine();
      linecount++;
      logger.debug("Line " + linecount + ": " + line);
      if (line.length() > 0) {
        remark = line;
      }

      logger.info("Reading rest of file");
      line = input.readLine();
      linecount++;
      logger.debug("Line " + linecount + ": " + line);

      // if the line is empty we hav a problem - either a malformed
      // molecule entry or just extra new lines at the end of the file
      if (line.length() == 0) {
        // read till the next $$$$ or EOF
        while (true) {
          line = input.readLine();
          linecount++;
          if (line == null) {
            return null;
          }
          if (line.startsWith("$$$$")) {
            return molecule; // an empty molecule
          }
        }
      }

      // check the CT block version
      if (line.contains("V3000") || line.contains("v3000")) {
        handleError("This file must be read with the MDLV3000Reader.");
      } else if (!line.contains("V2000") && !line.contains("v2000")) {
        handleError("This file must be read with the MDLReader.");
      }

      atoms = Integer.parseInt(line.substring(0, 3).trim());
      List<IAtom> atomList = new ArrayList<IAtom>();

      logger.debug("Atomcount: " + atoms);
      bonds = Integer.parseInt(line.substring(3, 6).trim());
      logger.debug("Bondcount: " + bonds);
      List<IBond> bondList = new ArrayList<IBond>();

      // used for applying the MDL valence model
      int[] explicitValence = new int[atoms];

      // read ATOM block
      logger.info("Reading atom block");
      atomsByLinePosition = new ArrayList<IAtom>();
      atomsByLinePosition.add(null); // 0 is not a valid position
      int atomBlockLineNumber = 0;
      for (int f = 0; f < atoms; f++) {
        line = input.readLine();
        linecount++;
        atomBlockLineNumber++;
        Matcher trailingSpaceMatcher = TRAILING_SPACE.matcher(line);
        if (trailingSpaceMatcher.find()) {
          handleError(
              "Trailing space found",
              linecount,
              trailingSpaceMatcher.start(),
              trailingSpaceMatcher.end());
          line = trailingSpaceMatcher.replaceAll("");
        }
        x = Double.parseDouble(line.substring(0, 10).trim());
        y = Double.parseDouble(line.substring(10, 20).trim());
        z = Double.parseDouble(line.substring(20, 30).trim());
        // *all* values should be zero, not just the sum
        totalX += Math.abs(x);
        totalY += Math.abs(y);
        totalZ += Math.abs(z);
        logger.debug("Coordinates: " + x + "; " + y + "; " + z);
        String element = line.substring(31, Math.min(line.length(), 34)).trim();
        if (line.length() < 34) {
          handleError(
              "Element atom type does not follow V2000 format type should of length three"
                  + " and padded with space if required",
              linecount,
              31,
              34);
        }

        logger.debug("Atom type: ", element);
        if (isotopeFactory.isElement(element)) {
          atom = isotopeFactory.configure(molecule.getBuilder().newInstance(IAtom.class, element));
        } else if ("A".equals(element)) {
          atom = molecule.getBuilder().newInstance(IPseudoAtom.class, element);
        } else if ("Q".equals(element)) {
          atom = molecule.getBuilder().newInstance(IPseudoAtom.class, element);
        } else if ("*".equals(element)) {
          atom = molecule.getBuilder().newInstance(IPseudoAtom.class, element);
        } else if ("LP".equals(element)) {
          atom = molecule.getBuilder().newInstance(IPseudoAtom.class, element);
        } else if ("L".equals(element)) {
          atom = molecule.getBuilder().newInstance(IPseudoAtom.class, element);
        } else if (element.equals("R") || (element.length() > 0 && element.charAt(0) == 'R')) {
          logger.debug("Atom ", element, " is not an regular element. Creating a PseudoAtom.");
          // check if the element is R
          rGroup = element.split("^R");
          atom = null;
          if (rGroup.length > 1) {
            try {
              Rnumber = Integer.valueOf(rGroup[(rGroup.length - 1)]);
              RGroupCounter = Rnumber;
              element = "R" + Rnumber;
              atom = molecule.getBuilder().newInstance(IPseudoAtom.class, element);

            } catch (Exception ex) {
              // This happens for atoms labeled "R#".
              // The Rnumber may be set later on, using RGP line
              atom = molecule.getBuilder().newInstance(IPseudoAtom.class, "R");
              rAtoms.put(atomBlockLineNumber, (IPseudoAtom) atom);
            }
          } else {
            atom = molecule.getBuilder().newInstance(IPseudoAtom.class, element);
          }
        } else {
          handleError(
              "Invalid element type. Must be an existing " + "element, or one in: A, Q, L, LP, *.",
              linecount,
              32,
              35);
          atom = molecule.getBuilder().newInstance(IPseudoAtom.class, element);
          atom.setSymbol(element);
        }

        // store as 3D for now, convert to 2D (if totalZ == 0.0) later
        atom.setPoint3d(new Point3d(x, y, z));

        // parse further fields
        if (line.length() >= 36) {
          String massDiffString = line.substring(34, 36).trim();
          logger.debug("Mass difference: ", massDiffString);
          if (!(atom instanceof IPseudoAtom)) {
            try {
              int massDiff = Integer.parseInt(massDiffString);
              if (massDiff != 0) {
                IIsotope major = Isotopes.getInstance().getMajorIsotope(element);
                atom.setMassNumber(major.getMassNumber() + massDiff);
              }
            } catch (Exception exception) {
              handleError("Could not parse mass difference field.", linecount, 35, 37, exception);
            }
          } else {
            logger.error("Cannot set mass difference for a non-element!");
          }
        } else {
          handleError("Mass difference is missing", linecount, 34, 36);
        }

        // set the stereo partiy
        Integer parity = line.length() > 41 ? Character.digit(line.charAt(41), 10) : 0;
        atom.setStereoParity(parity);

        if (line.length() >= 51) {
          String valenceString = removeNonDigits(line.substring(48, 51));
          logger.debug("Valence: ", valenceString);
          if (!(atom instanceof IPseudoAtom)) {
            try {
              int valence = Integer.parseInt(valenceString);
              if (valence != 0) {
                // 15 is defined as 0 in mol files
                if (valence == 15) atom.setValency(0);
                else atom.setValency(valence);
              }
            } catch (Exception exception) {
              handleError(
                  "Could not parse valence information field", linecount, 49, 52, exception);
            }
          } else {
            logger.error("Cannot set valence information for a non-element!");
          }
        }

        if (line.length() >= 39) {
          String chargeCodeString = line.substring(36, 39).trim();
          logger.debug("Atom charge code: ", chargeCodeString);
          int chargeCode = Integer.parseInt(chargeCodeString);
          if (chargeCode == 0) {
            // uncharged species
          } else if (chargeCode == 1) {
            atom.setFormalCharge(+3);
          } else if (chargeCode == 2) {
            atom.setFormalCharge(+2);
          } else if (chargeCode == 3) {
            atom.setFormalCharge(+1);
          } else if (chargeCode == 4) {
          } else if (chargeCode == 5) {
            atom.setFormalCharge(-1);
          } else if (chargeCode == 6) {
            atom.setFormalCharge(-2);
          } else if (chargeCode == 7) {
            atom.setFormalCharge(-3);
          }
        } else {
          handleError("Atom charge is missing", linecount, 36, 39);
        }

        try {
          // read the mmm field as position 61-63
          String reactionAtomIDString = line.substring(60, 63).trim();
          logger.debug("Parsing mapping id: ", reactionAtomIDString);
          try {
            int reactionAtomID = Integer.parseInt(reactionAtomIDString);
            if (reactionAtomID != 0) {
              atom.setProperty(CDKConstants.ATOM_ATOM_MAPPING, reactionAtomID);
            }
          } catch (Exception exception) {
            logger.error("Mapping number ", reactionAtomIDString, " is not an integer.");
            logger.debug(exception);
          }
        } catch (Exception exception) {
          // older mol files don't have all these fields...
          logger.warn("A few fields are missing. Older MDL MOL file?");
        }

        // shk3: This reads shifts from after the molecule. I don't think this is an official
        // format, but I saw it frequently 80=>78 for alk
        if (line.length() >= 78) {
          double shift = Double.parseDouble(line.substring(69, 80).trim());
          atom.setProperty("first shift", shift);
        }
        if (line.length() >= 87) {
          double shift = Double.parseDouble(line.substring(79, 87).trim());
          atom.setProperty("second shift", shift);
        }
        atomList.add(atom);
        atomsByLinePosition.add(atom);
      }

      // convert to 2D, if totalZ == 0
      if (totalX == 0.0 && totalY == 0.0 && totalZ == 0.0) {
        logger.info("All coordinates are 0.0");
        if (atomList.size() == 1) {
          atomList.get(0).setPoint2d(new Point2d(x, y));
        } else {
          for (IAtom atomToUpdate : atomList) {
            atomToUpdate.setPoint3d(null);
          }
        }
      } else if (totalZ == 0.0 && !forceReadAs3DCoords.isSet()) {
        logger.info("Total 3D Z is 0.0, interpreting it as a 2D structure");
        for (IAtom atomToUpdate : atomList) {
          Point3d p3d = atomToUpdate.getPoint3d();
          if (p3d != null) {
            atomToUpdate.setPoint2d(new Point2d(p3d.x, p3d.y));
            atomToUpdate.setPoint3d(null);
          }
        }
      }

      // read BOND block
      logger.info("Reading bond block");
      int queryBondCount = 0;
      for (int f = 0; f < bonds; f++) {
        line = input.readLine();
        linecount++;
        atom1 = Integer.parseInt(line.substring(0, 3).trim());
        atom2 = Integer.parseInt(line.substring(3, 6).trim());
        order = Integer.parseInt(line.substring(6, 9).trim());
        if (line.length() >= 12) {
          int mdlStereo =
              line.length() > 12
                  ? Integer.parseInt(line.substring(9, 12).trim())
                  : Integer.parseInt(line.substring(9).trim());
          if (mdlStereo == 1) {
            // MDL up bond
            stereo = IBond.Stereo.UP;
          } else if (mdlStereo == 6) {
            // MDL down bond
            stereo = IBond.Stereo.DOWN;
          } else if (mdlStereo == 0) {
            if (order == 2) {
              // double bond stereo defined by coordinates
              stereo = IBond.Stereo.E_Z_BY_COORDINATES;
            } else {
              // bond has no stereochemistry
              stereo = IBond.Stereo.NONE;
            }
          } else if (mdlStereo == 3 && order == 2) {
            // unknown E/Z stereochemistry
            stereo = IBond.Stereo.E_OR_Z;
          } else if (mdlStereo == 4) {
            // MDL bond undefined
            stereo = IBond.Stereo.UP_OR_DOWN;
          }
        } else {
          handleError("Missing expected stereo field at line: ", linecount, 10, 12);
        }
        if (logger.isDebugEnabled()) {
          logger.debug("Bond: " + atom1 + " - " + atom2 + "; order " + order);
        }
        // interpret CTfile's special bond orders
        IAtom a1 = atomList.get(atom1 - 1);
        IAtom a2 = atomList.get(atom2 - 1);
        IBond newBond = null;
        if (order >= 1 && order <= 3) {
          IBond.Order cdkOrder = IBond.Order.SINGLE;
          if (order == 2) cdkOrder = IBond.Order.DOUBLE;
          if (order == 3) cdkOrder = IBond.Order.TRIPLE;
          if (stereo != null) {
            newBond = molecule.getBuilder().newInstance(IBond.class, a1, a2, cdkOrder, stereo);
          } else {
            newBond = molecule.getBuilder().newInstance(IBond.class, a1, a2, cdkOrder);
          }
        } else if (order == 4) {
          // aromatic bond
          if (stereo != null) {
            newBond =
                molecule.getBuilder().newInstance(IBond.class, a1, a2, IBond.Order.UNSET, stereo);
          } else {
            newBond = molecule.getBuilder().newInstance(IBond.class, a1, a2, IBond.Order.UNSET);
          }
          // mark both atoms and the bond as aromatic and raise the SINGLE_OR_DOUBLE-flag
          newBond.setFlag(CDKConstants.SINGLE_OR_DOUBLE, true);
          newBond.setFlag(CDKConstants.ISAROMATIC, true);
          a1.setFlag(CDKConstants.ISAROMATIC, true);
          a2.setFlag(CDKConstants.ISAROMATIC, true);
        } else {
          queryBondCount++;
          newBond = new CTFileQueryBond(molecule.getBuilder());
          IAtom[] bondAtoms = {a1, a2};
          newBond.setAtoms(bondAtoms);
          newBond.setOrder(null);
          CTFileQueryBond.Type queryBondType = null;
          switch (order) {
            case 5:
              queryBondType = CTFileQueryBond.Type.SINGLE_OR_DOUBLE;
              break;
            case 6:
              queryBondType = CTFileQueryBond.Type.SINGLE_OR_AROMATIC;
              break;
            case 7:
              queryBondType = CTFileQueryBond.Type.DOUBLE_OR_AROMATIC;
              break;
            case 8:
              queryBondType = CTFileQueryBond.Type.ANY;
              break;
          }
          ((CTFileQueryBond) newBond).setType(queryBondType);
          newBond.setStereo(stereo);
        }
        bondList.add((newBond));

        // add the bond order to the explicit valence for each atom
        if (newBond.getOrder() != null && newBond.getOrder() != IBond.Order.UNSET) {
          explicitValence[atom1 - 1] += newBond.getOrder().numeric();
          explicitValence[atom2 - 1] += newBond.getOrder().numeric();
        } else {
          explicitValence[atom1 - 1] = Integer.MIN_VALUE;
          explicitValence[atom2 - 1] = Integer.MIN_VALUE;
        }
      }

      if (queryBondCount == 0) outputContainer = molecule;
      else {
        outputContainer = new QueryAtomContainer(molecule.getBuilder());
      }

      outputContainer.setProperty(CDKConstants.TITLE, title);
      outputContainer.setProperty(CDKConstants.REMARK, remark);
      for (IAtom at : atomList) {
        outputContainer.addAtom(at);
      }
      for (IBond bnd : bondList) {
        outputContainer.addBond(bnd);
      }

      // read PROPERTY block
      logger.info("Reading property block");
      while (true) {
        line = input.readLine();
        linecount++;
        if (line == null) {
          handleError("The expected property block is missing!", linecount, 0, 0);
        }
        if (line.startsWith("M  END")) break;

        boolean lineRead = false;
        if (line.startsWith("M  CHG")) {
          // FIXME: if this is encountered for the first time, all
          // atom charges should be set to zero first!
          int infoCount = Integer.parseInt(line.substring(6, 9).trim());
          StringTokenizer st = new StringTokenizer(line.substring(9));
          for (int i = 1; i <= infoCount; i++) {
            String token = st.nextToken();
            int atomNumber = Integer.parseInt(token.trim());
            token = st.nextToken();
            int charge = Integer.parseInt(token.trim());
            outputContainer.getAtom(atomNumber - 1).setFormalCharge(charge);
          }
        } else if (line.matches("A\\s{1,4}\\d+")) {
          // Reads the pseudo atom property from the mol file

          // The atom number of the to replaced atom
          int aliasAtomNumber =
              Integer.parseInt(line.replaceFirst("A\\s{1,4}", "")) - RGroupCounter;
          line = input.readLine();
          linecount++;
          String[] aliasArray = line.split("\\\\");
          // name of the alias atom like R1 or R2 etc.
          String alias = "";
          for (int i = 0; i < aliasArray.length; i++) {
            alias += aliasArray[i];
          }
          IAtom aliasAtom = outputContainer.getAtom(aliasAtomNumber);

          // skip if already a pseudoatom
          if (aliasAtom instanceof IPseudoAtom) {
            ((IPseudoAtom) aliasAtom).setLabel(alias);
            continue;
          }

          IAtom newPseudoAtom = molecule.getBuilder().newInstance(IPseudoAtom.class, alias);
          if (aliasAtom.getPoint2d() != null) {
            newPseudoAtom.setPoint2d(aliasAtom.getPoint2d());
          }
          if (aliasAtom.getPoint3d() != null) {
            newPseudoAtom.setPoint3d(aliasAtom.getPoint3d());
          }
          outputContainer.addAtom(newPseudoAtom);
          List<IBond> bondsOfAliasAtom = outputContainer.getConnectedBondsList(aliasAtom);

          for (int i = 0; i < bondsOfAliasAtom.size(); i++) {
            IBond bondOfAliasAtom = bondsOfAliasAtom.get(i);
            IAtom connectedToAliasAtom = bondOfAliasAtom.getConnectedAtom(aliasAtom);
            IBond newBond = bondOfAliasAtom.getBuilder().newInstance(IBond.class);
            newBond.setAtoms(new IAtom[] {connectedToAliasAtom, newPseudoAtom});
            newBond.setOrder(bondOfAliasAtom.getOrder());
            outputContainer.addBond(newBond);
            outputContainer.removeBond(aliasAtom, connectedToAliasAtom);
          }
          outputContainer.removeAtom(aliasAtom);
          RGroupCounter++;

        } else if (line.startsWith("M  ISO")) {
          try {
            String countString = line.substring(6, 10).trim();
            int infoCount = Integer.parseInt(countString);
            StringTokenizer st = new StringTokenizer(line.substring(10));
            for (int i = 1; i <= infoCount; i++) {
              int atomNumber = Integer.parseInt(st.nextToken().trim());
              int absMass = Integer.parseInt(st.nextToken().trim());
              if (absMass != 0) {
                IAtom isotope = outputContainer.getAtom(atomNumber - 1);
                isotope.setMassNumber(absMass);
              }
            }
          } catch (NumberFormatException exception) {
            String error =
                "Error ("
                    + exception.getMessage()
                    + ") while parsing line "
                    + linecount
                    + ": "
                    + line
                    + " in property block.";
            logger.error(error);
            handleError(
                "NumberFormatException in isotope information.", linecount, 7, 11, exception);
          }
        } else if (line.startsWith("M  RAD")) {
          try {
            String countString = line.substring(6, 9).trim();
            int infoCount = Integer.parseInt(countString);
            StringTokenizer st = new StringTokenizer(line.substring(9));
            for (int i = 1; i <= infoCount; i++) {
              int atomNumber = Integer.parseInt(st.nextToken().trim());
              int spinMultiplicity = Integer.parseInt(st.nextToken().trim());
              MDLV2000Writer.SPIN_MULTIPLICITY spin = MDLV2000Writer.SPIN_MULTIPLICITY.NONE;
              if (spinMultiplicity > 0) {
                IAtom radical = outputContainer.getAtom(atomNumber - 1);
                switch (spinMultiplicity) {
                  case 1:
                    spin = MDLV2000Writer.SPIN_MULTIPLICITY.DOUBLET;
                    break;
                  case 2:
                    spin = MDLV2000Writer.SPIN_MULTIPLICITY.SINGLET;
                    break;
                  case 3:
                    spin = MDLV2000Writer.SPIN_MULTIPLICITY.TRIPLET;
                    break;
                  default:
                    logger.debug("Invalid spin multiplicity found: " + spinMultiplicity);
                    break;
                }
                for (int j = 0; j < spin.getSingleElectrons(); j++) {
                  outputContainer.addSingleElectron(
                      molecule.getBuilder().newInstance(ISingleElectron.class, radical));
                }
              }
            }
          } catch (NumberFormatException exception) {
            String error =
                "Error ("
                    + exception.getMessage()
                    + ") while parsing line "
                    + linecount
                    + ": "
                    + line
                    + " in property block.";
            logger.error(error);
            handleError(
                "NumberFormatException in radical information", linecount, 7, 10, exception);
          }
        } else if (line.startsWith("G  ")) {
          try {
            String atomNumberString = line.substring(3, 6).trim();
            int atomNumber = Integer.parseInt(atomNumberString);
            // String whatIsThisString = line.substring(6,9).trim();

            String atomName = input.readLine();

            // convert Atom into a PseudoAtom
            IAtom prevAtom = outputContainer.getAtom(atomNumber - 1);
            IPseudoAtom pseudoAtom = molecule.getBuilder().newInstance(IPseudoAtom.class, atomName);
            if (prevAtom.getPoint2d() != null) {
              pseudoAtom.setPoint2d(prevAtom.getPoint2d());
            }
            if (prevAtom.getPoint3d() != null) {
              pseudoAtom.setPoint3d(prevAtom.getPoint3d());
            }
            AtomContainerManipulator.replaceAtomByAtom(molecule, prevAtom, pseudoAtom);
          } catch (NumberFormatException exception) {
            String error =
                "Error ("
                    + exception.toString()
                    + ") while parsing line "
                    + linecount
                    + ": "
                    + line
                    + " in property block.";
            logger.error(error);
            handleError("NumberFormatException in group information", linecount, 4, 7, exception);
          }
        } else if (line.startsWith("M  RGP")) {
          StringTokenizer st = new StringTokenizer(line);
          // Ignore first 3 tokens (overhead).
          st.nextToken();
          st.nextToken();
          st.nextToken();
          // Process the R group numbers as defined in RGP line.
          while (st.hasMoreTokens()) {
            Integer position = new Integer(st.nextToken());
            Rnumber = new Integer(st.nextToken());
            IPseudoAtom pseudoAtom = rAtoms.get(position);
            if (pseudoAtom != null) {
              pseudoAtom.setLabel("R" + Rnumber);
            }
          }
        }
        if (line.startsWith("V  ")) {
          Integer atomNumber = new Integer(line.substring(3, 6).trim());
          IAtom atomWithComment = outputContainer.getAtom(atomNumber - 1);
          atomWithComment.setProperty(CDKConstants.COMMENT, line.substring(7));
        }

        if (!lineRead) {
          logger.warn("Skipping line in property block: ", line);
        }
      }

      if (interpretHydrogenIsotopes.isSet()) {
        fixHydrogenIsotopes(molecule, isotopeFactory);
      }

      // note: apply the valence model last so that all fixes (i.e. hydrogen
      // isotopes) are in place
      for (int i = 0; i < atoms; i++) {
        applyMDLValenceModel(outputContainer.getAtom(i), explicitValence[i]);
      }

    } catch (CDKException exception) {
      String error =
          "Error while parsing line " + linecount + ": " + line + " -> " + exception.getMessage();
      logger.error(error);
      logger.debug(exception);
      throw exception;
    } catch (Exception exception) {
      exception.printStackTrace();
      String error =
          "Error while parsing line " + linecount + ": " + line + " -> " + exception.getMessage();
      logger.error(error);
      logger.debug(exception);
      handleError("Error while parsing line: " + line, linecount, 0, 0, exception);
    }
    return outputContainer;
  }
コード例 #12
0
 private static void markRingAtomsAndBondsAromatic(IAtomContainer container) {
   for (IAtom atom : container.atoms()) atom.setFlag(CDKConstants.ISAROMATIC, true);
   for (IBond bond : container.bonds()) bond.setFlag(CDKConstants.ISAROMATIC, true);
 }