コード例 #1
0
  /** Test of learn method, of class CategoryBalancedBaggingLearner. */
  @Test
  public void testLearn() {
    CategoryBalancedBaggingLearner<Vector, Boolean> instance =
        new CategoryBalancedBaggingLearner<Vector, Boolean>();
    instance.setLearner(new Perceptron());
    instance.setRandom(random);
    instance.setMaxIterations(5);
    instance.setPercentToSample(0.5);

    assertNull(instance.getResult());

    ArrayList<InputOutputPair<Vector, Boolean>> data =
        new ArrayList<InputOutputPair<Vector, Boolean>>();
    VectorFactory<?> vectorFactory = VectorFactory.getDefault();

    for (int i = 0; i < 100; i++) {
      data.add(
          new DefaultInputOutputPair<Vector, Boolean>(
              vectorFactory.createUniformRandom(14, 0.0, 1.0, random), true));
    }
    for (int i = 0; i < 2; i++) {
      data.add(
          new DefaultInputOutputPair<Vector, Boolean>(
              vectorFactory.createUniformRandom(14, -1.0, 0.0, random), false));
    }

    WeightedVotingCategorizerEnsemble<Vector, Boolean, ?> result = instance.learn(data);
    assertSame(result, instance.getResult());

    assertEquals(5, result.getMembers().size());
    for (WeightedValue<?> member : result.getMembers()) {
      assertEquals(1.0, member.getWeight(), 0.0);
      assertNotNull(member.getValue());
      assertTrue(member.getValue() instanceof LinearBinaryCategorizer);
    }
  }
コード例 #2
0
  /** Test of constructors of class CategoryBalancedBaggingLearner. */
  @Test
  public void testConstructors() {
    Perceptron learner = null;
    double percentToSample = BaggingCategorizerLearner.DEFAULT_PERCENT_TO_SAMPLE;
    int maxIterations = BaggingCategorizerLearner.DEFAULT_MAX_ITERATIONS;
    CategoryBalancedBaggingLearner<Vector, Boolean> instance =
        new CategoryBalancedBaggingLearner<Vector, Boolean>();
    assertSame(learner, instance.getLearner());
    assertEquals(percentToSample, instance.getPercentToSample(), 0.0);
    assertEquals(maxIterations, instance.getMaxIterations());
    assertNotNull(instance.getRandom());

    learner = new Perceptron();
    instance = new CategoryBalancedBaggingLearner<Vector, Boolean>(learner);
    assertSame(learner, instance.getLearner());
    assertEquals(percentToSample, instance.getPercentToSample(), 0.0);
    assertEquals(maxIterations, instance.getMaxIterations());
    assertNotNull(instance.getRandom());

    percentToSample = percentToSample / 3.4;
    maxIterations = maxIterations * 9;
    instance =
        new CategoryBalancedBaggingLearner<Vector, Boolean>(
            learner, maxIterations, percentToSample, random);
    assertSame(learner, instance.getLearner());
    assertEquals(percentToSample, instance.getPercentToSample(), 0.0);
    assertEquals(maxIterations, instance.getMaxIterations());
    assertSame(random, instance.getRandom());
  }