@Override public void predict(long uid, @Nonnull MutableSparseVector predictions) { logger.debug("predicting {} items for {}", predictions.keyDomain().size(), uid); OrdRecModel params = new OrdRecModel(quantizer); SparseVector ratings = makeUserVector(uid, userEventDao); LongSet keySet = LongUtils.setUnion(ratings.keySet(), predictions.keyDomain()); MutableSparseVector scores = MutableSparseVector.create(keySet); itemScorer.score(uid, scores); params.train(ratings, scores); logger.debug("trained parameters for {}: {}", uid, params); Vector probabilities = Vector.createLength(params.getLevelCount()); Long2ObjectMap<IVector> distChannel = null; if (reportDistribution) { distChannel = predictions.addChannel(RATING_PROBABILITY_CHANNEL); } for (VectorEntry e : predictions.fast(VectorEntry.State.EITHER)) { long iid = e.getKey(); double score = scores.get(iid); params.getProbDistribution(score, probabilities); int mlIdx = probabilities.maxElementIndex(); predictions.set(e, quantizer.getIndexValue(mlIdx)); if (distChannel != null) { distChannel.put(e.getKey(), probabilities.immutable()); } } }
/** * Build a rating matrix from the rating data. Each user's ratings are first normalized by * subtracting a baseline score (usually a mean). * * @param userMapping The index mapping of user IDs to column numbers. * @param itemMapping The index mapping of item IDs to row numbers. * @return A matrix storing the <i>normalized</i> user ratings. */ private RealMatrix createRatingMatrix(IdIndexMapping userMapping, IdIndexMapping itemMapping) { final int nusers = userMapping.size(); final int nitems = itemMapping.size(); // Create a matrix with users on rows and items on columns logger.info("creating {} by {} rating matrix", nusers, nitems); RealMatrix matrix = MatrixUtils.createRealMatrix(nusers, nitems); // populate it with data Cursor<UserHistory<Event>> users = userEventDAO.streamEventsByUser(); try { for (UserHistory<Event> user : users) { // Get the row number for this user int u = userMapping.getIndex(user.getUserId()); MutableSparseVector ratings = Ratings.userRatingVector(user.filter(Rating.class)); MutableSparseVector baselines = MutableSparseVector.create(ratings.keySet()); baselineScorer.score(user.getUserId(), baselines); // TODO Populate this user's row with their ratings, minus the baseline scores for (VectorEntry entry : ratings.fast(State.SET)) { long itemid = entry.getKey(); int i = itemMapping.getIndex(itemid); double rating = entry.getValue(); double baseline = baselines.get(itemid); matrix.setEntry(u, i, rating - baseline); } } } finally { users.close(); } return matrix; }
/** * Score items in a vector. The key domain of the provided vector is the items to score, and the * score method sets the values for each item to its score (or unsets it, if no score can be * provided). The previous values are discarded. * * @param user The user ID. * @param scores The score vector. */ @Override public void score(long user, @Nonnull MutableSparseVector scores) { // TODO Score the items in the key domain of scores for (VectorEntry e : scores.fast(VectorEntry.State.EITHER)) { long item = e.getKey(); // TODO Set the scores double score = prediction(user, item); scores.set(e, score); } }
@Override @SuppressWarnings({"rawtypes", "unchecked"}) public void execute() throws IOException, RecommenderBuildException { LenskitRecommenderEngine engine = loadEngine(); long user = options.getLong("user"); List<Long> items = options.get("items"); LenskitRecommender rec = engine.createRecommender(); RatingPredictor pred = rec.getRatingPredictor(); if (pred == null) { logger.error("recommender has no rating predictor"); throw new UnsupportedOperationException("no rating predictor"); } logger.info("predicting {} items", items.size()); Symbol pchan = getPrintChannel(); Stopwatch timer = Stopwatch.createStarted(); SparseVector preds = pred.predict(user, items); Long2ObjectMap channel = null; if (pchan != null) { for (TypedSymbol sym : preds.getChannelSymbols()) { if (sym.getRawSymbol().equals(pchan)) { channel = preds.getChannel(sym); } } } for (VectorEntry e : preds) { System.out.format(" %d: %.3f", e.getKey(), e.getValue()); if (channel != null) { System.out.format(" (%s)", channel.get(e.getKey())); } System.out.println(); } timer.stop(); logger.info("predicted for {} items in {}", items.size(), timer); }
/** The train function of OrdRec. Get all parameters after learning process. */ @SuppressWarnings("ConstantConditions") private void train(SparseVector ratings, MutableSparseVector scores) { Vector dbeta = Vector.createLength(beta.length()); double dt1; // n is the number of iteration; for (int j = 0; j < iterationCount; j++) { for (VectorEntry rating : ratings.fast()) { long iid = rating.getKey(); double score = scores.get(iid); int r = quantizer.index(rating.getValue()); double probEqualR = getProbEQ(score, r); double probLessR = getProbLE(score, r); double probLessR_1 = getProbLE(score, r - 1); dt1 = learningRate / probEqualR * (probLessR * (1 - probLessR) * derivateOfBeta(r, 0, t1) - probLessR_1 * (1 - probLessR_1) * derivateOfBeta(r - 1, 0, t1) - regTerm * t1); double dbetaK; for (int k = 0; k < beta.length(); k++) { dbetaK = learningRate / probEqualR * (probLessR * (1 - probLessR) * derivateOfBeta(r, k + 1, beta.get(k)) - probLessR_1 * (1 - probLessR_1) * derivateOfBeta(r - 1, k + 1, beta.get(k)) - regTerm * beta.get(k)); dbeta.set(k, dbetaK); } t1 = t1 + dt1; beta.add(dbeta); } } }
/** * This method is where the model should actually be computed. * * @return The TF-IDF model (a model of item tag vectors). */ @Override public TFIDFModel get() { // Build a map of tags to numeric IDs. This lets you convert tags (which are strings) // into long IDs that you can use as keys in a tag vector. Map<String, Long> tagIds = buildTagIdMap(); // Create a vector to accumulate document frequencies for the IDF computation MutableSparseVector docFreq = MutableSparseVector.create(tagIds.values()); docFreq.fill(0); // We now proceed in 2 stages. First, we build a TF vector for each item. // While we do this, we also build the DF vector. // We will then apply the IDF to each TF vector and normalize it to a unit vector. // Create a map to store the item TF vectors. Map<Long, MutableSparseVector> itemVectors = Maps.newHashMap(); // Create a work vector to accumulate each item's tag vector. // This vector will be re-used for each item. MutableSparseVector work = MutableSparseVector.create(tagIds.values()); // Iterate over the items to compute each item's vector. LongSet items = dao.getItemIds(); for (long item : items) { // Reset the work vector for this item's tags. work.clear(); // Now the vector is empty (all keys are 'unset'). List<String> hashtag = new ArrayList<String>(); for (String tag : dao.getItemTags(item)) { Long id = tagIds.get(tag); try { // if id is not in the key set, throw the Exception. work.set(id, work.get(id) + 1); } catch (Exception e) { // if you catch the Exception, which means that id has not been set yet. work.set(id, 1.0); // use set method to "set" the Key } if (!hashtag.contains(tag)) { docFreq.set(id, docFreq.get(id) + 1); hashtag.add(tag); } } // Save a shrunk copy of the vector (only storing tags that apply to this item) in // our map, we'll add IDF and normalize later. itemVectors.put(item, work.shrinkDomain()); // work is ready to be reset and re-used for the next item } // Now we've seen all the items, so we have each item's TF vector and a global vector // of document frequencies. // Invert and log the document frequency. We can do this in-place. for (VectorEntry e : docFreq.fast()) { docFreq.set(e.getKey(), Math.log(items.size() / e.getValue())); } // Now docFreq is a log-IDF vector. // So we can use it to apply IDF to each item vector to put it in the final model. // Create a map to store the final model data. Map<Long, SparseVector> modelData = Maps.newHashMap(); for (Map.Entry<Long, MutableSparseVector> entry : itemVectors.entrySet()) { MutableSparseVector tv = entry.getValue(); // DA FARE Convert this vector to a TF-IDF vector for (VectorEntry e : tv.fast()) { tv.set(e.getKey(), ((e.getValue() * docFreq.get(e.getKey())))); } // DA FARE Normalize the TF-IDF vector to be a unit vector // HINT The method tv.norm() will give you the Euclidian length of the vector tv.multiply(1 / tv.norm()); // Store a frozen (immutable) version of the vector in the model data. modelData.put(entry.getKey(), tv.freeze()); } // we technically don't need the IDF vector anymore, so long as we have no new tags return new TFIDFModel(tagIds, modelData); }