public static HashMap<String, Double> getRegionParamsFromGridCoverage( GridCoverage2D gridCoverage) { HashMap<String, Double> envelopeParams = new HashMap<String, Double>(); Envelope envelope = gridCoverage.getEnvelope(); DirectPosition lowerCorner = envelope.getLowerCorner(); double[] westSouth = lowerCorner.getCoordinate(); DirectPosition upperCorner = envelope.getUpperCorner(); double[] eastNorth = upperCorner.getCoordinate(); GridGeometry2D gridGeometry = gridCoverage.getGridGeometry(); GridEnvelope2D gridRange = gridGeometry.getGridRange2D(); int height = gridRange.height; int width = gridRange.width; AffineTransform gridToCRS = (AffineTransform) gridGeometry.getGridToCRS(); double xRes = XAffineTransform.getScaleX0(gridToCRS); double yRes = XAffineTransform.getScaleY0(gridToCRS); envelopeParams.put(NORTH, eastNorth[1]); envelopeParams.put(SOUTH, westSouth[1]); envelopeParams.put(WEST, westSouth[0]); envelopeParams.put(EAST, eastNorth[0]); envelopeParams.put(XRES, xRes); envelopeParams.put(YRES, yRes); envelopeParams.put(ROWS, (double) height); envelopeParams.put(COLS, (double) width); return envelopeParams; }
public GranuleOverviewLevelDescriptor( final double scaleX, final double scaleY, final int width, final int height) { this.scaleX = scaleX; this.scaleY = scaleY; this.baseToLevelTransform = new AffineTransform2D(XAffineTransform.getScaleInstance(scaleX, scaleY, 0, 0)); final AffineTransform gridToWorldTransform_ = new AffineTransform(baseToLevelTransform); gridToWorldTransform_.preConcatenate(CoverageUtilities.CENTER_TO_CORNER); gridToWorldTransform_.preConcatenate(baseGridToWorld); this.gridToWorldTransformCorner = new AffineTransform2D(gridToWorldTransform_); this.width = width; this.height = height; this.rasterDimensions = new Rectangle(0, 0, width, height); }
/** * Applies the band select operation to a grid coverage. * * @param cropEnvelope the target envelope; always not null * @param cropROI the target ROI shape; nullable * @param roiTolerance; as read from op's params * @param sourceCoverage is the source {@link GridCoverage2D} that we want to crop. * @param hints A set of rendering hints, or {@code null} if none. * @param sourceGridToWorldTransform is the 2d grid-to-world transform for the source coverage. * @return The result as a grid coverage. */ private static GridCoverage2D buildResult( final GeneralEnvelope cropEnvelope, final Geometry cropROI, final double roiTolerance, final boolean forceMosaic, final Hints hints, final GridCoverage2D sourceCoverage, final AffineTransform sourceGridToWorldTransform) { // // Getting the source coverage and its child geolocation objects // final RenderedImage sourceImage = sourceCoverage.getRenderedImage(); final GridGeometry2D sourceGridGeometry = ((GridGeometry2D) sourceCoverage.getGridGeometry()); final GridEnvelope2D sourceGridRange = sourceGridGeometry.getGridRange2D(); // // Now we try to understand if we have a simple scale and translate or a // more elaborated grid-to-world transformation n which case a simple // crop could not be enough, but we may need a more elaborated chain of // operation in order to do a good job. As an instance if we // have a rotation which is not multiple of PI/2 we have to use // the mosaic with a ROI // final boolean isSimpleTransform = CoverageUtilities.isSimpleGridToWorldTransform(sourceGridToWorldTransform, EPS); // Do we need to explode the Palette to RGB(A)? // int actionTaken = 0; // // // // Layout // // // final RenderingHints targetHints = new RenderingHints(null); if (hints != null) targetHints.add(hints); final ImageLayout layout = initLayout(sourceImage, targetHints); targetHints.put(JAI.KEY_IMAGE_LAYOUT, layout); // // prepare the processor to use for this operation // final JAI processor = OperationJAI.getJAI(targetHints); final boolean useProvidedProcessor = !processor.equals(JAI.getDefaultInstance()); try { if (cropROI != null) { // replace the cropEnvelope with the envelope of the intersection // of the ROI and the cropEnvelope. // Remember that envelope(intersection(roi,cropEnvelope)) != intersection(cropEnvelope, // envelope(roi)) final Polygon modelSpaceROI = FeatureUtilities.getPolygon(cropEnvelope, GFACTORY); Geometry intersection = IntersectUtils.intersection(cropROI, modelSpaceROI); Envelope2D e2d = JTS.getEnvelope2D( intersection.getEnvelopeInternal(), cropEnvelope.getCoordinateReferenceSystem()); GeneralEnvelope ge = new GeneralEnvelope((org.opengis.geometry.Envelope) e2d); cropEnvelope.setEnvelope(ge); } // // // // Build the new range by keeping into // account translation of grid geometry constructor for respecting // OGC PIXEL-IS-CENTER ImageDatum assumption. // // // final AffineTransform sourceWorldToGridTransform = sourceGridToWorldTransform.createInverse(); // // // // finalRasterArea will hold the smallest rectangular integer raster area that contains the // floating point raster // area which we obtain when applying the world-to-grid transform to the cropEnvelope. Note // that we need to intersect // such an area with the area covered by the source coverage in order to be sure we do not try // to crop outside the // bounds of the source raster. // // // final Rectangle2D finalRasterAreaDouble = XAffineTransform.transform( sourceWorldToGridTransform, cropEnvelope.toRectangle2D(), null); final Rectangle finalRasterArea = finalRasterAreaDouble.getBounds(); // intersection with the original range in order to not try to crop outside the image bounds Rectangle.intersect(finalRasterArea, sourceGridRange, finalRasterArea); if (finalRasterArea.isEmpty()) throw new CannotCropException(Errors.format(ErrorKeys.CANT_CROP)); // // // // It is worth to point out that doing a crop the G2W transform // should not change while the envelope might change as // a consequence of the rounding of the underlying image datum // which uses integer factors or in case the G2W is very // complex. Note that we will always strive to // conserve the original grid-to-world transform. // // // // we do not have to crop in this case (should not really happen at // this time) if (finalRasterArea.equals(sourceGridRange) && isSimpleTransform && cropROI == null) return sourceCoverage; // // // // if I get here I have something to crop // using the world-to-grid transform for going from envelope to the // new grid range. // // // final double minX = finalRasterArea.getMinX(); final double minY = finalRasterArea.getMinY(); final double width = finalRasterArea.getWidth(); final double height = finalRasterArea.getHeight(); // // // // Check if we need to use mosaic or crop // // // final PlanarImage croppedImage; final ParameterBlock pbj = new ParameterBlock(); pbj.addSource(sourceImage); java.awt.Polygon rasterSpaceROI = null; String operatioName = null; if (!isSimpleTransform || cropROI != null) { // ///////////////////////////////////////////////////////////////////// // // We don't have a simple scale and translate transform, JAI // crop MAY NOT suffice. Let's decide whether or not we'll use // the Mosaic. // // ///////////////////////////////////////////////////////////////////// Polygon modelSpaceROI = FeatureUtilities.getPolygon(cropEnvelope, GFACTORY); // // // // Now convert this polygon back into a shape for the source // raster space. // // // final List<Point2D> points = new ArrayList<Point2D>(5); rasterSpaceROI = FeatureUtilities.convertPolygonToPointArray( modelSpaceROI, ProjectiveTransform.create(sourceWorldToGridTransform), points); if (rasterSpaceROI == null || rasterSpaceROI.getBounds().isEmpty()) if (finalRasterArea.isEmpty()) throw new CannotCropException(Errors.format(ErrorKeys.CANT_CROP)); final boolean doMosaic = forceMosaic ? true : decideJAIOperation(roiTolerance, rasterSpaceROI.getBounds2D(), points); if (doMosaic || cropROI != null) { // prepare the params for the mosaic final ROI[] roiarr; try { if (cropROI != null) { final LiteShape2 cropRoiLS2 = new LiteShape2( cropROI, ProjectiveTransform.create(sourceWorldToGridTransform), null, false); ROI cropRS = new ROIShape(cropRoiLS2); Rectangle2D rt = cropRoiLS2.getBounds2D(); if (!hasIntegerBounds(rt)) { // Approximate Geometry Geometry geo = (Geometry) cropRoiLS2.getGeometry().clone(); transformGeometry(geo); cropRS = new ROIShape(new LiteShape2(geo, null, null, false)); } roiarr = new ROI[] {cropRS}; } else { final ROIShape roi = new ROIShape(rasterSpaceROI); roiarr = new ROI[] {roi}; } } catch (FactoryException ex) { throw new CannotCropException(Errors.format(ErrorKeys.CANT_CROP), ex); } pbj.add(MosaicDescriptor.MOSAIC_TYPE_OVERLAY); pbj.add(null); pbj.add(roiarr); pbj.add(null); pbj.add(CoverageUtilities.getBackgroundValues(sourceCoverage)); // prepare the final layout final Rectangle bounds = rasterSpaceROI.getBounds2D().getBounds(); Rectangle.intersect(bounds, sourceGridRange, bounds); if (bounds.isEmpty()) throw new CannotCropException(Errors.format(ErrorKeys.CANT_CROP)); // we do not have to crop in this case (should not really happen at // this time) if (!doMosaic && bounds.getBounds().equals(sourceGridRange) && isSimpleTransform) return sourceCoverage; // nice trick, we use the layout to do the actual crop final Rectangle boundsInt = bounds.getBounds(); layout.setMinX(boundsInt.x); layout.setWidth(boundsInt.width); layout.setMinY(boundsInt.y); layout.setHeight(boundsInt.height); operatioName = "Mosaic"; } } // do we still have to set the operation name? If so that means we have to go for crop. if (operatioName == null) { // executing the crop pbj.add((float) minX); pbj.add((float) minY); pbj.add((float) width); pbj.add((float) height); operatioName = "GTCrop"; } // // // // Apply operation // // // if (!useProvidedProcessor) { croppedImage = JAI.create(operatioName, pbj, targetHints); } else { croppedImage = processor.createNS(operatioName, pbj, targetHints); } // conserve the input grid to world transformation Map sourceProperties = sourceCoverage.getProperties(); Map properties = null; if (sourceProperties != null && !sourceProperties.isEmpty()) { properties = new HashMap(sourceProperties); } if (rasterSpaceROI != null) { if (properties != null) { properties.put("GC_ROI", rasterSpaceROI); } else { properties = Collections.singletonMap("GC_ROI", rasterSpaceROI); } } return new GridCoverageFactory(hints) .create( sourceCoverage.getName(), croppedImage, new GridGeometry2D( new GridEnvelope2D(croppedImage.getBounds()), sourceGridGeometry.getGridToCRS2D(PixelOrientation.CENTER), sourceCoverage.getCoordinateReferenceSystem()), (GridSampleDimension[]) (actionTaken == 1 ? null : sourceCoverage.getSampleDimensions().clone()), new GridCoverage[] {sourceCoverage}, properties); } catch (TransformException e) { throw new CannotCropException(Errors.format(ErrorKeys.CANT_CROP), e); } catch (NoninvertibleTransformException e) { throw new CannotCropException(Errors.format(ErrorKeys.CANT_CROP), e); } }
/** * Applies a crop operation to a coverage. * * @see * org.geotools.coverage.processing.AbstractOperation#doOperation(org.opengis.parameter.ParameterValueGroup, * org.geotools.factory.Hints) */ @SuppressWarnings("unchecked") public Coverage doOperation(ParameterValueGroup parameters, Hints hints) { final Geometry cropRoi; // extracted from parameters GeneralEnvelope cropEnvelope = null; // extracted from parameters final GridCoverage2D source; // extracted from parameters final double roiTolerance = parameters.parameter(Crop.PARAMNAME_ROITOLERANCE).doubleValue(); final boolean forceMosaic = parameters.parameter(Crop.PARAMNAME_FORCEMOSAIC).booleanValue(); // ///////////////////////////////////////////////////////////////////// // // Assigning and checking input parameters // // /////////////////////////////////////////////////////////////////// // source coverage final ParameterValue sourceParameter = parameters.parameter("Source"); if (sourceParameter == null || !(sourceParameter.getValue() instanceof GridCoverage2D)) { throw new CannotCropException( Errors.format(ErrorKeys.NULL_PARAMETER_$2, "Source", GridCoverage2D.class.toString())); } source = (GridCoverage2D) sourceParameter.getValue(); // Check Envelope and ROI existence - we need at least one of them final ParameterValue envelopeParameter = parameters.parameter(PARAMNAME_ENVELOPE); final ParameterValue roiParameter = parameters.parameter(PARAMNAME_ROI); if ((envelopeParameter == null || envelopeParameter.getValue() == null) && (roiParameter == null || roiParameter.getValue() == null)) throw new CannotCropException( Errors.format( ErrorKeys.NULL_PARAMETER_$2, PARAMNAME_ENVELOPE, GeneralEnvelope.class.toString())); Object envelope = envelopeParameter.getValue(); if (envelope != null) { if (envelope instanceof GeneralEnvelope) { cropEnvelope = (GeneralEnvelope) envelope; } else if (envelope instanceof Envelope) { cropEnvelope = new GeneralEnvelope((Envelope) envelope); } } // may be null // Check crop ROI try { cropRoi = IntersectUtils.unrollGeometries( (Geometry) roiParameter.getValue()); // may throw if format not correct } catch (IllegalArgumentException ex) { throw new CannotCropException( Errors.format(ErrorKeys.ILLEGAL_ARGUMENT_$2, PARAMNAME_ROI, ex.getMessage()), ex); } // Setting a GeneralEnvelope from ROI if needed if (cropRoi != null && cropEnvelope == null) { Envelope e2d = JTS.getEnvelope2D(cropRoi.getEnvelopeInternal(), source.getCoordinateReferenceSystem()); cropEnvelope = new GeneralEnvelope(e2d); } // ///////////////////////////////////////////////////////////////////// // // Initialization // // We take the crop envelope and the source envelope then we check their // crs and we also check if they ever overlap. // // ///////////////////////////////////////////////////////////////////// // envelope of the source coverage final Envelope2D sourceEnvelope = source.getEnvelope2D(); // crop envelope Envelope2D destinationEnvelope = new Envelope2D(cropEnvelope); CoordinateReferenceSystem sourceCRS = sourceEnvelope.getCoordinateReferenceSystem(); CoordinateReferenceSystem destinationCRS = destinationEnvelope.getCoordinateReferenceSystem(); if (destinationCRS == null) { // Do not change the user provided object - clone it first. final Envelope2D ge = new Envelope2D(destinationEnvelope); destinationCRS = source.getCoordinateReferenceSystem2D(); ge.setCoordinateReferenceSystem(destinationCRS); destinationEnvelope = ge; } // // // // Source and destination crs must be equals // // // if (!CRS.equalsIgnoreMetadata(sourceCRS, destinationCRS)) { throw new CannotCropException( Errors.format( ErrorKeys.MISMATCHED_ENVELOPE_CRS_$2, sourceCRS.getName().getCode(), destinationCRS.getName().getCode())); } if (cropRoi != null) { // TODO: check ROI SRID } // // // // Check the intersection and, if needed, do the crop operation. // // // final GeneralEnvelope intersectionEnvelope = new GeneralEnvelope((Envelope) destinationEnvelope); intersectionEnvelope.setCoordinateReferenceSystem(source.getCoordinateReferenceSystem()); // intersect the envelopes intersectionEnvelope.intersect(sourceEnvelope); if (intersectionEnvelope.isEmpty()) throw new CannotCropException(Errors.format(ErrorKeys.CANT_CROP)); // intersect the ROI with the intersection envelope and throw an error if they do not intersect if (cropRoi != null) { final Geometry jis = JTS.toGeometry( (com.vividsolutions.jts.geom.Envelope) new ReferencedEnvelope(intersectionEnvelope)); if (!IntersectUtils.intersects(cropRoi, jis)) throw new CannotCropException(Errors.format(ErrorKeys.CANT_CROP)); } // // // // Get the grid-to-world transform by keeping into account translation // of grid geometry constructor for respecting OGC PIXEL-IS-CENTER // ImageDatum assumption. // // // final AffineTransform sourceCornerGridToWorld = (AffineTransform) ((GridGeometry2D) source.getGridGeometry()).getGridToCRS(PixelInCell.CELL_CORNER); // // // // I set the tolerance as half the scale factor of the grid-to-world // transform. This should more or less means in most cases "don't bother // to crop if the new envelope is as close to the old one that we go // deep under pixel size." // // // final double tolerance = XAffineTransform.getScale(sourceCornerGridToWorld); if (cropRoi != null || !intersectionEnvelope.equals(sourceEnvelope, tolerance / 2.0, false)) { cropEnvelope = intersectionEnvelope.clone(); return buildResult( cropEnvelope, cropRoi, roiTolerance, forceMosaic, (hints instanceof Hints) ? (Hints) hints : new Hints(hints), source, sourceCornerGridToWorld); } else { // // // // Note that in case we don't crop at all, WE DO NOT UPDATE the // envelope. If we did we might end up doing multiple successive // crop without actually cropping the image but, still, we would // shrink the envelope each time. Just think about having a loop // that crops recursively the same coverage specifying each time an // envelope whose URC is only a a scale quarter close to the LLC of // the old one. We would never crop the raster but we would modify // the grid-to-world transform each time. // // // return source; } }
/** * Collect georeferencing information about this geotiff. * * @param hints * @throws DataSourceException */ private void getHRInfo(Hints hints) throws DataSourceException { ImageReader reader = null; ImageReader ovrReader = null; ImageInputStream ovrStream = null; try { // // // // Get a reader for this format // // // reader = READER_SPI.createReaderInstance(); // // // // get the METADATA // // // inStream.mark(); reader.setInput(inStream); final IIOMetadata iioMetadata = reader.getImageMetadata(0); final GeoTiffIIOMetadataDecoder metadata = new GeoTiffIIOMetadataDecoder(iioMetadata); gtcs = new GeoTiffMetadata2CRSAdapter(hints); // // // // get the CRS INFO // // // final Object tempCRS = this.hints.get(Hints.DEFAULT_COORDINATE_REFERENCE_SYSTEM); if (tempCRS != null) { this.crs = (CoordinateReferenceSystem) tempCRS; if (LOGGER.isLoggable(Level.FINE)) LOGGER.log(Level.FINE, "Using forced coordinate reference system"); } else { // check external prj first crs = getCRS(source); // now, if we did not want to override the inner CRS or we did not have any external PRJ at // hand // let's look inside the geotiff if (!OVERRIDE_INNER_CRS || crs == null) { if (metadata.hasGeoKey() && gtcs != null) { crs = gtcs.createCoordinateSystem(metadata); } } } // // No data // if (metadata.hasNoData()) { noData = metadata.getNoData(); } // // parse and set layout // setLayout(reader); // // // // get the dimension of the hr image and build the model as well as // computing the resolution // // numOverviews = reader.getNumImages(true) - 1; int hrWidth = reader.getWidth(0); int hrHeight = reader.getHeight(0); final Rectangle actualDim = new Rectangle(0, 0, hrWidth, hrHeight); originalGridRange = new GridEnvelope2D(actualDim); if (gtcs != null && metadata != null && (metadata.hasModelTrasformation() || (metadata.hasPixelScales() && metadata.hasTiePoints()))) { this.raster2Model = GeoTiffMetadata2CRSAdapter.getRasterToModel(metadata); } else { // world file this.raster2Model = parseWorldFile(source); // now world file --> mapinfo? if (raster2Model == null) { MapInfoFileReader mifReader = parseMapInfoFile(source); if (mifReader != null) { raster2Model = mifReader.getTransform(); crs = mifReader.getCRS(); } } } if (crs == null) { if (LOGGER.isLoggable(Level.WARNING)) { LOGGER.warning("Coordinate Reference System is not available"); } crs = AbstractGridFormat.getDefaultCRS(); } if (this.raster2Model == null) { TiePoint[] modelTiePoints = metadata.getModelTiePoints(); if (modelTiePoints != null && modelTiePoints.length > 1) { // use a unit transform and expose the GCPs gcps = new GroundControlPoints(Arrays.asList(modelTiePoints), crs); raster2Model = ProjectiveTransform.create(new AffineTransform()); crs = AbstractGridFormat.getDefaultCRS(); } else { throw new DataSourceException("Raster to Model Transformation is not available"); } } // create envelope using corner transformation final AffineTransform tempTransform = new AffineTransform((AffineTransform) raster2Model); tempTransform.concatenate(CoverageUtilities.CENTER_TO_CORNER); originalEnvelope = CRS.transform(ProjectiveTransform.create(tempTransform), new GeneralEnvelope(actualDim)); originalEnvelope.setCoordinateReferenceSystem(crs); // /// // // setting the higher resolution available for this coverage // // /// highestRes = new double[2]; highestRes[0] = XAffineTransform.getScaleX0(tempTransform); highestRes[1] = XAffineTransform.getScaleY0(tempTransform); if (ovrInStreamSPI != null) { ovrReader = READER_SPI.createReaderInstance(); ovrStream = ovrInStreamSPI.createInputStreamInstance( ovrSource, ImageIO.getUseCache(), ImageIO.getCacheDirectory()); ovrReader.setInput(ovrStream); // this includes the real image as this is a image index, we need to add one. extOvrImgChoice = numOverviews + 1; numOverviews = numOverviews + ovrReader.getNumImages(true); if (numOverviews < extOvrImgChoice) extOvrImgChoice = -1; } // // // // get information for the successive images // // // if (numOverviews >= 1) { overViewResolutions = new double[numOverviews][2]; // Internal overviews start at 1, so lastInternalOverview matches numOverviews if no // external. int firstExternalOverview = extOvrImgChoice == -1 ? numOverviews : extOvrImgChoice - 1; double spanRes0 = highestRes[0] * this.originalGridRange.getSpan(0); double spanRes1 = highestRes[1] * this.originalGridRange.getSpan(1); for (int i = 0; i < firstExternalOverview; i++) { overViewResolutions[i][0] = spanRes0 / reader.getWidth(i + 1); overViewResolutions[i][1] = spanRes1 / reader.getHeight(i + 1); } for (int i = firstExternalOverview; i < numOverviews; i++) { overViewResolutions[i][0] = spanRes0 / ovrReader.getWidth(i - firstExternalOverview); overViewResolutions[i][1] = spanRes1 / ovrReader.getHeight(i - firstExternalOverview); } } else overViewResolutions = null; } catch (Throwable e) { throw new DataSourceException(e); } finally { if (reader != null) try { reader.dispose(); } catch (Throwable t) { } if (ovrReader != null) try { ovrReader.dispose(); } catch (Throwable t) { } if (ovrStream != null) try { ovrStream.close(); } catch (Throwable t) { } if (inStream != null) try { inStream.reset(); } catch (Throwable t) { } } }
/** * Load a specified a raster as a portion of the granule describe by this {@link * GranuleDescriptor}. * * @param imageReadParameters the {@link ImageReadParam} to use for reading. * @param index the index to use for the {@link ImageReader}. * @param cropBBox the bbox to use for cropping. * @param mosaicWorldToGrid the cropping grid to world transform. * @param request the incoming request to satisfy. * @param hints {@link Hints} to be used for creating this raster. * @return a specified a raster as a portion of the granule describe by this {@link * GranuleDescriptor}. * @throws IOException in case an error occurs. */ public GranuleLoadingResult loadRaster( final ImageReadParam imageReadParameters, final int index, final ReferencedEnvelope cropBBox, final MathTransform2D mosaicWorldToGrid, final RasterLayerRequest request, final Hints hints) throws IOException { if (LOGGER.isLoggable(java.util.logging.Level.FINER)) { final String name = Thread.currentThread().getName(); LOGGER.finer( "Thread:" + name + " Loading raster data for granuleDescriptor " + this.toString()); } ImageReadParam readParameters = null; int imageIndex; final ReferencedEnvelope bbox = inclusionGeometry != null ? new ReferencedEnvelope( granuleBBOX.intersection(inclusionGeometry.getEnvelopeInternal()), granuleBBOX.getCoordinateReferenceSystem()) : granuleBBOX; boolean doFiltering = false; if (filterMe) { doFiltering = Utils.areaIsDifferent(inclusionGeometry, baseGridToWorld, granuleBBOX); } // intersection of this tile bound with the current crop bbox final ReferencedEnvelope intersection = new ReferencedEnvelope( bbox.intersection(cropBBox), cropBBox.getCoordinateReferenceSystem()); if (intersection.isEmpty()) { if (LOGGER.isLoggable(java.util.logging.Level.FINE)) { LOGGER.fine( new StringBuilder("Got empty intersection for granule ") .append(this.toString()) .append(" with request ") .append(request.toString()) .append(" Resulting in no granule loaded: Empty result") .toString()); } return null; } ImageInputStream inStream = null; ImageReader reader = null; try { // // get info about the raster we have to read // // get a stream assert cachedStreamSPI != null : "no cachedStreamSPI available!"; inStream = cachedStreamSPI.createInputStreamInstance( granuleUrl, ImageIO.getUseCache(), ImageIO.getCacheDirectory()); if (inStream == null) return null; // get a reader and try to cache the relevant SPI if (cachedReaderSPI == null) { reader = ImageIOExt.getImageioReader(inStream); if (reader != null) cachedReaderSPI = reader.getOriginatingProvider(); } else reader = cachedReaderSPI.createReaderInstance(); if (reader == null) { if (LOGGER.isLoggable(java.util.logging.Level.WARNING)) { LOGGER.warning( new StringBuilder("Unable to get s reader for granuleDescriptor ") .append(this.toString()) .append(" with request ") .append(request.toString()) .append(" Resulting in no granule loaded: Empty result") .toString()); } return null; } // set input reader.setInput(inStream); // Checking for heterogeneous granules if (request.isHeterogeneousGranules()) { // create read parameters readParameters = new ImageReadParam(); // override the overviews controller for the base layer imageIndex = ReadParamsController.setReadParams( request.getRequestedResolution(), request.getOverviewPolicy(), request.getDecimationPolicy(), readParameters, request.rasterManager, overviewsController); } else { imageIndex = index; readParameters = imageReadParameters; } // get selected level and base level dimensions final GranuleOverviewLevelDescriptor selectedlevel = getLevel(imageIndex, reader); // now create the crop grid to world which can be used to decide // which source area we need to crop in the selected level taking // into account the scale factors imposed by the selection of this // level together with the base level grid to world transformation AffineTransform2D cropWorldToGrid = new AffineTransform2D(selectedlevel.gridToWorldTransformCorner); cropWorldToGrid = (AffineTransform2D) cropWorldToGrid.inverse(); // computing the crop source area which lives into the // selected level raster space, NOTICE that at the end we need to // take into account the fact that we might also decimate therefore // we cannot just use the crop grid to world but we need to correct // it. final Rectangle sourceArea = CRS.transform(cropWorldToGrid, intersection).toRectangle2D().getBounds(); // gutter if (selectedlevel.baseToLevelTransform.isIdentity()) sourceArea.grow(2, 2); XRectangle2D.intersect( sourceArea, selectedlevel.rasterDimensions, sourceArea); // make sure roundings don't bother us // is it empty?? if (sourceArea.isEmpty()) { if (LOGGER.isLoggable(java.util.logging.Level.FINE)) { LOGGER.fine( "Got empty area for granuleDescriptor " + this.toString() + " with request " + request.toString() + " Resulting in no granule loaded: Empty result"); } return null; } else if (LOGGER.isLoggable(java.util.logging.Level.FINER)) { LOGGER.finer( "Loading level " + imageIndex + " with source region: " + sourceArea + " subsampling: " + readParameters.getSourceXSubsampling() + "," + readParameters.getSourceYSubsampling() + " for granule:" + granuleUrl); } // Setting subsampling int newSubSamplingFactor = 0; final String pluginName = cachedReaderSPI.getPluginClassName(); if (pluginName != null && pluginName.equals(ImageUtilities.DIRECT_KAKADU_PLUGIN)) { final int ssx = readParameters.getSourceXSubsampling(); final int ssy = readParameters.getSourceYSubsampling(); newSubSamplingFactor = ImageIOUtilities.getSubSamplingFactor2(ssx, ssy); if (newSubSamplingFactor != 0) { if (newSubSamplingFactor > maxDecimationFactor && maxDecimationFactor != -1) { newSubSamplingFactor = maxDecimationFactor; } readParameters.setSourceSubsampling(newSubSamplingFactor, newSubSamplingFactor, 0, 0); } } // set the source region readParameters.setSourceRegion(sourceArea); final RenderedImage raster; try { // read raster = request .getReadType() .read( readParameters, imageIndex, granuleUrl, selectedlevel.rasterDimensions, reader, hints, false); } catch (Throwable e) { if (LOGGER.isLoggable(java.util.logging.Level.FINE)) { LOGGER.log( java.util.logging.Level.FINE, "Unable to load raster for granuleDescriptor " + this.toString() + " with request " + request.toString() + " Resulting in no granule loaded: Empty result", e); } return null; } // use fixed source area sourceArea.setRect(readParameters.getSourceRegion()); // // setting new coefficients to define a new affineTransformation // to be applied to the grid to world transformation // ----------------------------------------------------------------------------------- // // With respect to the original envelope, the obtained planarImage // needs to be rescaled. The scaling factors are computed as the // ratio between the cropped source region sizes and the read // image sizes. // // place it in the mosaic using the coords created above; double decimationScaleX = ((1.0 * sourceArea.width) / raster.getWidth()); double decimationScaleY = ((1.0 * sourceArea.height) / raster.getHeight()); final AffineTransform decimationScaleTranform = XAffineTransform.getScaleInstance(decimationScaleX, decimationScaleY); // keep into account translation to work into the selected level raster space final AffineTransform afterDecimationTranslateTranform = XAffineTransform.getTranslateInstance(sourceArea.x, sourceArea.y); // now we need to go back to the base level raster space final AffineTransform backToBaseLevelScaleTransform = selectedlevel.baseToLevelTransform; // now create the overall transform final AffineTransform finalRaster2Model = new AffineTransform(baseGridToWorld); finalRaster2Model.concatenate(CoverageUtilities.CENTER_TO_CORNER); final double x = finalRaster2Model.getTranslateX(); final double y = finalRaster2Model.getTranslateY(); if (!XAffineTransform.isIdentity(backToBaseLevelScaleTransform, Utils.AFFINE_IDENTITY_EPS)) finalRaster2Model.concatenate(backToBaseLevelScaleTransform); if (!XAffineTransform.isIdentity(afterDecimationTranslateTranform, Utils.AFFINE_IDENTITY_EPS)) finalRaster2Model.concatenate(afterDecimationTranslateTranform); if (!XAffineTransform.isIdentity(decimationScaleTranform, Utils.AFFINE_IDENTITY_EPS)) finalRaster2Model.concatenate(decimationScaleTranform); // keep into account translation factors to place this tile finalRaster2Model.preConcatenate((AffineTransform) mosaicWorldToGrid); final Interpolation interpolation = request.getInterpolation(); // paranoiac check to avoid that JAI freaks out when computing its internal layouT on images // that are too small Rectangle2D finalLayout = ImageUtilities.layoutHelper( raster, (float) finalRaster2Model.getScaleX(), (float) finalRaster2Model.getScaleY(), (float) finalRaster2Model.getTranslateX(), (float) finalRaster2Model.getTranslateY(), interpolation); if (finalLayout.isEmpty()) { if (LOGGER.isLoggable(java.util.logging.Level.INFO)) LOGGER.info( "Unable to create a granuleDescriptor " + this.toString() + " due to jai scale bug creating a null source area"); return null; } ROI granuleLoadingShape = null; if (granuleROIShape != null) { final Point2D translate = mosaicWorldToGrid.transform(new DirectPosition2D(x, y), (Point2D) null); AffineTransform tx2 = new AffineTransform(); tx2.preConcatenate( AffineTransform.getScaleInstance( ((AffineTransform) mosaicWorldToGrid).getScaleX(), -((AffineTransform) mosaicWorldToGrid).getScaleY())); tx2.preConcatenate( AffineTransform.getScaleInstance( ((AffineTransform) baseGridToWorld).getScaleX(), -((AffineTransform) baseGridToWorld).getScaleY())); tx2.preConcatenate( AffineTransform.getTranslateInstance(translate.getX(), translate.getY())); granuleLoadingShape = (ROI) granuleROIShape.transform(tx2); } // apply the affine transform conserving indexed color model final RenderingHints localHints = new RenderingHints( JAI.KEY_REPLACE_INDEX_COLOR_MODEL, interpolation instanceof InterpolationNearest ? Boolean.FALSE : Boolean.TRUE); if (XAffineTransform.isIdentity(finalRaster2Model, Utils.AFFINE_IDENTITY_EPS)) { return new GranuleLoadingResult(raster, granuleLoadingShape, granuleUrl, doFiltering); } else { // // In case we are asked to use certain tile dimensions we tile // also at this stage in case the read type is Direct since // buffered images comes up untiled and this can affect the // performances of the subsequent affine operation. // final Dimension tileDimensions = request.getTileDimensions(); if (tileDimensions != null && request.getReadType().equals(ReadType.DIRECT_READ)) { final ImageLayout layout = new ImageLayout(); layout.setTileHeight(tileDimensions.width).setTileWidth(tileDimensions.height); localHints.add(new RenderingHints(JAI.KEY_IMAGE_LAYOUT, layout)); } else { if (hints != null && hints.containsKey(JAI.KEY_IMAGE_LAYOUT)) { final Object layout = hints.get(JAI.KEY_IMAGE_LAYOUT); if (layout != null && layout instanceof ImageLayout) { localHints.add( new RenderingHints(JAI.KEY_IMAGE_LAYOUT, ((ImageLayout) layout).clone())); } } } if (hints != null && hints.containsKey(JAI.KEY_TILE_CACHE)) { final Object cache = hints.get(JAI.KEY_TILE_CACHE); if (cache != null && cache instanceof TileCache) localHints.add(new RenderingHints(JAI.KEY_TILE_CACHE, (TileCache) cache)); } if (hints != null && hints.containsKey(JAI.KEY_TILE_SCHEDULER)) { final Object scheduler = hints.get(JAI.KEY_TILE_SCHEDULER); if (scheduler != null && scheduler instanceof TileScheduler) localHints.add(new RenderingHints(JAI.KEY_TILE_SCHEDULER, (TileScheduler) scheduler)); } boolean addBorderExtender = true; if (hints != null && hints.containsKey(JAI.KEY_BORDER_EXTENDER)) { final Object extender = hints.get(JAI.KEY_BORDER_EXTENDER); if (extender != null && extender instanceof BorderExtender) { localHints.add(new RenderingHints(JAI.KEY_BORDER_EXTENDER, (BorderExtender) extender)); addBorderExtender = false; } } // border extender if (addBorderExtender) { localHints.add(ImageUtilities.BORDER_EXTENDER_HINTS); } // boolean hasScaleX=!(Math.abs(finalRaster2Model.getScaleX()-1) < // 1E-2/(raster.getWidth()+1-raster.getMinX())); // boolean hasScaleY=!(Math.abs(finalRaster2Model.getScaleY()-1) < // 1E-2/(raster.getHeight()+1-raster.getMinY())); // boolean hasShearX=!(finalRaster2Model.getShearX() == 0.0); // boolean hasShearY=!(finalRaster2Model.getShearY() == 0.0); // boolean hasTranslateX=!(Math.abs(finalRaster2Model.getTranslateX()) < // 0.01F); // boolean hasTranslateY=!(Math.abs(finalRaster2Model.getTranslateY()) < // 0.01F); // boolean isTranslateXInt=!(Math.abs(finalRaster2Model.getTranslateX() - // (int) finalRaster2Model.getTranslateX()) < 0.01F); // boolean isTranslateYInt=!(Math.abs(finalRaster2Model.getTranslateY() - // (int) finalRaster2Model.getTranslateY()) < 0.01F); // // boolean isIdentity = finalRaster2Model.isIdentity() && // !hasScaleX&&!hasScaleY &&!hasTranslateX&&!hasTranslateY; // // TODO how can we check that the a skew is harmelss???? // if(isIdentity){ // // TODO check if we are missing anything like tiling or such that // comes from hints // return new GranuleLoadingResult(raster, granuleLoadingShape, // granuleUrl, doFiltering); // } // // // TOLERANCE ON PIXELS SIZE // // // Check and see if the affine transform is in fact doing // // a Translate operation. That is a scale by 1 and no rotation. // // In which case call translate. Note that only integer translate // // is applicable. For non-integer translate we'll have to do the // // affine. // // If the hints contain an ImageLayout hint, we can't use // // TranslateIntOpImage since it isn't capable of dealing with that. // // Get ImageLayout from renderHints if any. // ImageLayout layout = RIFUtil.getImageLayoutHint(localHints); // if ( !hasScaleX && // !hasScaleY && // !hasShearX&& // !hasShearY&& // isTranslateXInt&& // isTranslateYInt&& // layout == null) { // // It's a integer translate // return new GranuleLoadingResult(new TranslateIntOpImage(raster, // localHints, // (int) finalRaster2Model.getShearX(), // (int) // finalRaster2Model.getShearY()),granuleLoadingShape, granuleUrl, doFiltering); // } ImageWorker iw = new ImageWorker(raster); iw.setRenderingHints(localHints); iw.affine(finalRaster2Model, interpolation, request.getBackgroundValues()); return new GranuleLoadingResult( iw.getRenderedImage(), granuleLoadingShape, granuleUrl, doFiltering); } } catch (IllegalStateException e) { if (LOGGER.isLoggable(java.util.logging.Level.WARNING)) { LOGGER.log( java.util.logging.Level.WARNING, new StringBuilder("Unable to load raster for granuleDescriptor ") .append(this.toString()) .append(" with request ") .append(request.toString()) .append(" Resulting in no granule loaded: Empty result") .toString(), e); } return null; } catch (org.opengis.referencing.operation.NoninvertibleTransformException e) { if (LOGGER.isLoggable(java.util.logging.Level.WARNING)) { LOGGER.log( java.util.logging.Level.WARNING, new StringBuilder("Unable to load raster for granuleDescriptor ") .append(this.toString()) .append(" with request ") .append(request.toString()) .append(" Resulting in no granule loaded: Empty result") .toString(), e); } return null; } catch (TransformException e) { if (LOGGER.isLoggable(java.util.logging.Level.WARNING)) { LOGGER.log( java.util.logging.Level.WARNING, new StringBuilder("Unable to load raster for granuleDescriptor ") .append(this.toString()) .append(" with request ") .append(request.toString()) .append(" Resulting in no granule loaded: Empty result") .toString(), e); } return null; } finally { try { if (request.getReadType() != ReadType.JAI_IMAGEREAD && inStream != null) { inStream.close(); } } finally { if (request.getReadType() != ReadType.JAI_IMAGEREAD && reader != null) { reader.dispose(); } } } }
/** * Tests the {@link OverviewsController} with support for different resolutions/different number * of overviews. * * <p>world_a.tif => Pixel Size = (0.833333333333333,-0.833333333333333); 4 overviews world_b.tif * => Pixel Size = (1.406250000000000,-1.406250000000000); 2 overviews * * @throws IOException * @throws MismatchedDimensionException * @throws FactoryException * @throws TransformException */ @Test public void testHeterogeneousGranules() throws IOException, MismatchedDimensionException, FactoryException, TransformException { final CoordinateReferenceSystem WGS84 = CRS.decode("EPSG:4326", true); final ReferencedEnvelope TEST_BBOX_A = new ReferencedEnvelope(-180, 0, -90, 90, WGS84); final ReferencedEnvelope TEST_BBOX_B = new ReferencedEnvelope(0, 180, 0, 90, WGS84); URL heterogeneousGranulesURL = TestData.url(this, "heterogeneous"); // // // // Initialize mosaic variables // // // final Hints hints = new Hints(Hints.DEFAULT_COORDINATE_REFERENCE_SYSTEM, WGS84); final AbstractGridFormat format = (AbstractGridFormat) GridFormatFinder.findFormat(heterogeneousGranulesURL, hints); Assert.assertNotNull(format); Assert.assertFalse("UknownFormat", format instanceof UnknownFormat); final ImageMosaicReader reader = (ImageMosaicReader) format.getReader(heterogeneousGranulesURL, hints); Assert.assertNotNull(reader); final int nOv = reader.getNumberOfOvervies(); final double[] hRes = reader.getHighestRes(); final RasterManager rasterManager = new RasterManager(reader); // // // // Initialize granules related variables // // // final File g1File = new File(DataUtilities.urlToFile(heterogeneousGranulesURL), "world_a.tif"); final File g2File = new File(DataUtilities.urlToFile(heterogeneousGranulesURL), "world_b.tif"); final ImageReadParam readParamsG1 = new ImageReadParam(); final ImageReadParam readParamsG2 = new ImageReadParam(); int imageIndexG1 = 0; int imageIndexG2 = 0; final GranuleDescriptor granuleDescriptor1 = new GranuleDescriptor(g1File.getAbsolutePath(), TEST_BBOX_A, spi, (Geometry) null, true); final GranuleDescriptor granuleDescriptor2 = new GranuleDescriptor(g2File.getAbsolutePath(), TEST_BBOX_B, spi, (Geometry) null, true); assertNotNull(granuleDescriptor1.toString()); assertNotNull(granuleDescriptor2.toString()); final OverviewsController ovControllerG1 = granuleDescriptor1.overviewsController; final OverviewsController ovControllerG2 = granuleDescriptor2.overviewsController; // // // // Initializing read request // // // final GeneralEnvelope envelope = reader.getOriginalEnvelope(); final GridEnvelope originalRange = reader.getOriginalGridRange(); final Rectangle rasterArea = new Rectangle( 0, 0, (int) Math.ceil(originalRange.getSpan(0) / 9.0), (int) Math.ceil(originalRange.getSpan(1) / 9.0)); final GridEnvelope2D range = new GridEnvelope2D(rasterArea); final GridToEnvelopeMapper geMapper = new GridToEnvelopeMapper(range, envelope); geMapper.setPixelAnchor(PixelInCell.CELL_CENTER); final AffineTransform gridToWorld = geMapper.createAffineTransform(); final double requestedResolution[] = new double[] { XAffineTransform.getScaleX0(gridToWorld), XAffineTransform.getScaleY0(gridToWorld) }; TestSet at = null; if (nOv == 4 && Math.abs(hRes[0] - 0.833333333333) <= THRESHOLD) { at = at1; } else if (nOv == 2 && Math.abs(hRes[0] - 1.40625) <= THRESHOLD) { at = at2; } else { return; } // // // // Starting OverviewsController tests // // // final OverviewPolicy[] ovPolicies = new OverviewPolicy[] { OverviewPolicy.QUALITY, OverviewPolicy.SPEED, OverviewPolicy.NEAREST, OverviewPolicy.IGNORE }; for (int i = 0; i < ovPolicies.length; i++) { OverviewPolicy ovPolicy = ovPolicies[i]; LOGGER.info("Testing with OverviewPolicy = " + ovPolicy.toString()); imageIndexG1 = ReadParamsController.setReadParams( requestedResolution, ovPolicy, DecimationPolicy.ALLOW, readParamsG1, rasterManager, ovControllerG1); imageIndexG2 = ReadParamsController.setReadParams( requestedResolution, ovPolicy, DecimationPolicy.ALLOW, readParamsG2, rasterManager, ovControllerG2); assertSame(at.ot[i].g1.imageIndex, imageIndexG1); assertSame(at.ot[i].g2.imageIndex, imageIndexG2); assertSame(at.ot[i].g1.ssx, readParamsG1.getSourceXSubsampling()); assertSame(at.ot[i].g1.ssy, readParamsG1.getSourceYSubsampling()); assertSame(at.ot[i].g2.ssx, readParamsG2.getSourceXSubsampling()); assertSame(at.ot[i].g2.ssy, readParamsG2.getSourceYSubsampling()); } }
/** * Computes the requested resolution which is going to be used for selecting overviews and or * deciding decimation factors on the target coverage. * * <p>In case the requested envelope is in the same {@link CoordinateReferenceSystem} of the * coverage we compute the resolution using the requested {@link MathTransform}. Notice that it * must be a {@link LinearTransform} or else we fail. * * <p>In case the requested envelope is not in the same {@link CoordinateReferenceSystem} of the * coverage we * * @throws DataSourceException in case something bad happens during reprojections and/or * intersections. */ private void computeRequestedResolution() throws DataSourceException { try { // let's try to get the resolution from the requested gridToWorld if (requestedGridToWorld instanceof LinearTransform) { // // the crs of the request and the one of the coverage are NOT the // same and the conversion is not , we can get the resolution from envelope + raster // directly // if (destinationToSourceTransform != null && !destinationToSourceTransform.isIdentity()) { // // compute the approximated resolution in the request crs, notice that we are // assuming a reprojection that keeps the raster area unchanged hence // the effect is a degradation of quality, but we might take that into account emprically // requestedResolution = null; // // // compute the raster that correspond to the crop bbox at the highest resolution // final Rectangle sourceRasterArea = new GeneralGridEnvelope( // CRS.transform( // PixelTranslation.translate(rasterManager.getRaster2Model(),PixelInCell.CELL_CENTER,PixelInCell.CELL_CORNER).inverse(), // cropBBox),PixelInCell.CELL_CORNER,false).toRectangle(); // XRectangle2D.intersect(sourceRasterArea, // rasterManager.spatialDomainManager.coverageRasterArea, sourceRasterArea); // if(sourceRasterArea.isEmpty()) // throw new DataSourceException("The request source raster area is empty"); final GridToEnvelopeMapper geMapper = new GridToEnvelopeMapper(new GridEnvelope2D(destinationRasterArea), cropBBox); final AffineTransform tempTransform = geMapper.createAffineTransform(); // final double scaleX=XAffineTransform.getScaleX0((AffineTransform) // requestedGridToWorld)/XAffineTransform.getScaleX0(tempTransform); // final double scaleY=XAffineTransform.getScaleY0((AffineTransform) // requestedGridToWorld)/XAffineTransform.getScaleY0(tempTransform); // // // // empiric adjustment to get a finer resolution to have better quality when // reprojecting // // TODO make it parametric // // // requestedRasterScaleFactors= new double[2]; // requestedRasterScaleFactors[0]=scaleX*1.0; // requestedRasterScaleFactors[1]=scaleY*1.0; requestedResolution = new double[] { XAffineTransform.getScaleX0(tempTransform), XAffineTransform.getScaleY0(tempTransform) }; } else { // the crs of the request and the one of the coverage are the // same, we can get the resolution from the grid to world requestedResolution = new double[] { XAffineTransform.getScaleX0(requestedGridToWorld), XAffineTransform.getScaleY0(requestedGridToWorld) }; } } else // should not happen throw new UnsupportedOperationException( Errors.format(ErrorKeys.UNSUPPORTED_OPERATION_$1, requestedGridToWorld.toString())); // leave return; } catch (Throwable e) { if (LOGGER.isLoggable(Level.INFO)) LOGGER.log(Level.INFO, "Unable to compute requested resolution", e); } // // use the coverage resolution since we cannot compute the requested one // LOGGER.log(Level.WARNING, "Unable to compute requested resolution, using highest available"); requestedResolution = coverageProperties.fullResolution; }
/** * This method is responsible fro creating a world file to georeference an image given the image * bounding box and the image geometry. The name of the file is composed by the name of the image * file with a proper extension, depending on the format (see WorldImageFormat). The projection is * in the world file. * * @param imageFile * @param baseFile Basename and path for this image. * @param ext * @throws IOException In case we cannot create the world file. * @throws TransformException */ private void createWorldFile( final AffineTransform transform, final String ext, final String baseFile) throws IOException { // ///////////////////////////////////////////////////////////////////// // // CRS information // // //////////////////////////////////////////////////////////////////// // final AffineTransform gridToWorld = (AffineTransform) // gc.getGridGeometry ().getGridToCRS (); final boolean lonFirst = (XAffineTransform.getSwapXY(transform) != -1); // ///////////////////////////////////////////////////////////////////// // // World File values // It is worthwhile to note that we have to keep into account the fact // that the axis could be swapped (LAT,lon) therefore when getting // xPixSize and yPixSize we need to look for it a the right place // inside the grid to world transform. // // //////////////////////////////////////////////////////////////////// final double xPixelSize = (lonFirst) ? transform.getScaleX() : transform.getShearY(); final double rotation1 = (lonFirst) ? transform.getShearX() : transform.getScaleX(); final double rotation2 = (lonFirst) ? transform.getShearY() : transform.getScaleY(); final double yPixelSize = (lonFirst) ? transform.getScaleY() : transform.getShearX(); final double xLoc = transform.getTranslateX(); final double yLoc = transform.getTranslateY(); // ///////////////////////////////////////////////////////////////////// // // writing world file // // //////////////////////////////////////////////////////////////////// final StringBuffer buff = new StringBuffer(baseFile); // looking for another extension if (ext.substring(0, 4).equalsIgnoreCase(".tif")) { buff.append(".tfw"); } else if (ext.substring(0, 4).equalsIgnoreCase(".png")) { buff.append(".pgw"); } else if (ext.substring(0, 4).equalsIgnoreCase(".jpg") || ext.substring(0, 4).equalsIgnoreCase("jpeg")) { buff.append(".jpw"); } else if (ext.substring(0, 4).equalsIgnoreCase(".gif")) { buff.append(".gfw"); } else if (ext.substring(0, 4).equalsIgnoreCase(".bmp")) { buff.append(".bpw"); } else { buff.append(".tffw"); } final File worldFile = new File(buff.toString()); LOG.debug("Writing world file: " + worldFile); final PrintWriter out = new PrintWriter(new FileOutputStream(worldFile)); try { out.println(xPixelSize); out.println(rotation1); out.println(rotation2); out.println(yPixelSize); out.println(xLoc); out.println(yLoc); out.flush(); } finally { out.close(); } }