コード例 #1
0
  /**
   * Create a NEAT population.
   *
   * @param architecture The architecture string to use.
   * @param input The input count.
   * @param output The output count.
   * @return The population.
   */
  public MLMethod create(final String architecture, final int input, final int output) {

    if (input <= 0) {
      throw new EncogError("Must have at least one input for NEAT.");
    }

    if (output <= 0) {
      throw new EncogError("Must have at least one output for NEAT.");
    }

    final Map<String, String> args = ArchitectureParse.parseParams(architecture);
    final ParamsHolder holder = new ParamsHolder(args);

    final int populationSize = holder.getInt(MLMethodFactory.PROPERTY_POPULATION_SIZE, false, 1000);

    final int cycles =
        holder.getInt(MLMethodFactory.PROPERTY_CYCLES, false, NEATPopulation.DEFAULT_CYCLES);

    ActivationFunction af =
        this.factory.create(
            holder.getString(MLMethodFactory.PROPERTY_AF, false, MLActivationFactory.AF_SSIGMOID));

    NEATPopulation pop = new NEATPopulation(input, output, populationSize);
    pop.reset();
    pop.setActivationCycles(cycles);
    pop.setNEATActivationFunction(af);

    return pop;
  }
コード例 #2
0
  /**
   * Create a LMA trainer.
   *
   * @param method The method to use.
   * @param training The training data to use.
   * @param argsStr The arguments to use.
   * @return The newly created trainer.
   */
  public MLTrain create(final MLMethod method, final MLDataSet training, final String argsStr) {

    if (!(method instanceof SOM)) {
      throw new EncogError(
          "Neighborhood training cannot be used on a method of type: "
              + method.getClass().getName());
    }

    final Map<String, String> args = ArchitectureParse.parseParams(argsStr);
    final ParamsHolder holder = new ParamsHolder(args);

    final double learningRate = holder.getDouble(MLTrainFactory.PROPERTY_LEARNING_RATE, false, 0.7);
    final String neighborhoodStr =
        holder.getString(MLTrainFactory.PROPERTY_NEIGHBORHOOD, false, "rbf");
    final String rbfTypeStr = holder.getString(MLTrainFactory.PROPERTY_RBF_TYPE, false, "gaussian");

    RBFEnum t;

    if (rbfTypeStr.equalsIgnoreCase("Gaussian")) {
      t = RBFEnum.Gaussian;
    } else if (rbfTypeStr.equalsIgnoreCase("Multiquadric")) {
      t = RBFEnum.Multiquadric;
    } else if (rbfTypeStr.equalsIgnoreCase("InverseMultiquadric")) {
      t = RBFEnum.InverseMultiquadric;
    } else if (rbfTypeStr.equalsIgnoreCase("MexicanHat")) {
      t = RBFEnum.MexicanHat;
    } else {
      t = RBFEnum.Gaussian;
    }

    NeighborhoodFunction nf = null;

    if (neighborhoodStr.equalsIgnoreCase("bubble")) {
      nf = new NeighborhoodBubble(1);
    } else if (neighborhoodStr.equalsIgnoreCase("rbf")) {
      final String str = holder.getString(MLTrainFactory.PROPERTY_DIMENSIONS, true, null);
      final int[] size = NumberList.fromListInt(CSVFormat.EG_FORMAT, str);
      nf = new NeighborhoodRBF(size, t);
    } else if (neighborhoodStr.equalsIgnoreCase("rbf1d")) {
      nf = new NeighborhoodRBF1D(t);
    }
    if (neighborhoodStr.equalsIgnoreCase("single")) {
      nf = new NeighborhoodSingle();
    }

    final BasicTrainSOM result = new BasicTrainSOM((SOM) method, learningRate, training, nf);

    if (args.containsKey(MLTrainFactory.PROPERTY_ITERATIONS)) {
      final int plannedIterations = holder.getInt(MLTrainFactory.PROPERTY_ITERATIONS, false, 1000);
      final double startRate =
          holder.getDouble(MLTrainFactory.PROPERTY_START_LEARNING_RATE, false, 0.05);
      final double endRate =
          holder.getDouble(MLTrainFactory.PROPERTY_END_LEARNING_RATE, false, 0.05);
      final double startRadius = holder.getDouble(MLTrainFactory.PROPERTY_START_RADIUS, false, 10);
      final double endRadius = holder.getDouble(MLTrainFactory.PROPERTY_END_RADIUS, false, 1);
      result.setAutoDecay(plannedIterations, startRate, endRate, startRadius, endRadius);
    }

    return result;
  }
コード例 #3
0
  /**
   * Create a Manhattan trainer.
   *
   * @param method The method to use.
   * @param training The training data to use.
   * @param argsStr The arguments to use.
   * @return The newly created trainer.
   */
  public final MLTrain create(
      final MLMethod method, final MLDataSet training, final String argsStr) {

    final Map<String, String> args = ArchitectureParse.parseParams(argsStr);
    final ParamsHolder holder = new ParamsHolder(args);

    final double learningRate = holder.getDouble(MLTrainFactory.PROPERTY_LEARNING_RATE, false, 0.1);

    return new ManhattanPropagation((BasicNetwork) method, training, learningRate);
  }
コード例 #4
0
  /**
   * Create a SVM trainer.
   *
   * @param method The method to use.
   * @param training The training data to use.
   * @param argsStr The arguments to use.
   * @return The newly created trainer.
   */
  public MLTrain create(final MLMethod method, final MLDataSet training, final String argsStr) {

    if (!(method instanceof SVM)) {
      throw new EncogError(
          "SVM Train training cannot be used on a method of type: " + method.getClass().getName());
    }

    final double defaultGamma = 1.0 / ((SVM) method).getInputCount();
    final double defaultC = 1.0;

    final Map<String, String> args = ArchitectureParse.parseParams(argsStr);
    final ParamsHolder holder = new ParamsHolder(args);
    final double gamma = holder.getDouble(MLTrainFactory.PROPERTY_GAMMA, false, defaultGamma);
    final double c = holder.getDouble(MLTrainFactory.PROPERTY_C, false, defaultC);

    final SVMTrain result = new SVMTrain((SVM) method, training);
    result.setGamma(gamma);
    result.setC(c);
    return result;
  }
コード例 #5
0
  /**
   * Create a RBF network.
   *
   * @param architecture THe architecture string to use.
   * @param input The input count.
   * @param output The output count.
   * @return The RBF network.
   */
  public MLMethod create(final String architecture, final int input, final int output) {

    final List<String> layers = ArchitectureParse.parseLayers(architecture);
    if (layers.size() != MAX_LAYERS) {
      throw new EncogError("RBF Networks must have exactly three elements, " + "separated by ->.");
    }

    final ArchitectureLayer inputLayer = ArchitectureParse.parseLayer(layers.get(0), input);
    final ArchitectureLayer rbfLayer = ArchitectureParse.parseLayer(layers.get(1), -1);
    final ArchitectureLayer outputLayer = ArchitectureParse.parseLayer(layers.get(2), output);

    final int inputCount = inputLayer.getCount();
    final int outputCount = outputLayer.getCount();

    RBFEnum t;

    if (rbfLayer.getName().equalsIgnoreCase("Gaussian")) {
      t = RBFEnum.Gaussian;
    } else if (rbfLayer.getName().equalsIgnoreCase("Multiquadric")) {
      t = RBFEnum.Multiquadric;
    } else if (rbfLayer.getName().equalsIgnoreCase("InverseMultiquadric")) {
      t = RBFEnum.InverseMultiquadric;
    } else if (rbfLayer.getName().equalsIgnoreCase("MexicanHat")) {
      t = RBFEnum.MexicanHat;
    } else {
      throw new NeuralNetworkError("Unknown RBF: " + rbfLayer.getName());
    }

    final ParamsHolder holder = new ParamsHolder(rbfLayer.getParams());

    final int rbfCount = holder.getInt("C", true, 0);

    final RBFNetwork result = new RBFNetwork(inputCount, rbfCount, outputCount, t);

    return result;
  }
コード例 #6
0
  /**
   * Create a SVM trainer.
   *
   * @param method The method to use.
   * @param training The training data to use.
   * @param argsStr The arguments to use.
   * @return The newly created trainer.
   */
  public MLTrain create(final MLMethod method, final MLDataSet training, final String argsStr) {

    if (!(method instanceof SVM)) {
      throw new EncogError(
          "SVM Train training cannot be used on a method of type: " + method.getClass().getName());
    }

    final Map<String, String> args = ArchitectureParse.parseParams(argsStr);
    new ParamsHolder(args);

    final ParamsHolder holder = new ParamsHolder(args);
    final double gammaStart =
        holder.getDouble(
            SVMSearchFactory.PROPERTY_GAMMA1, false, SVMSearchTrain.DEFAULT_GAMMA_BEGIN);
    final double cStart =
        holder.getDouble(SVMSearchFactory.PROPERTY_C1, false, SVMSearchTrain.DEFAULT_CONST_BEGIN);
    final double gammaStop =
        holder.getDouble(SVMSearchFactory.PROPERTY_GAMMA2, false, SVMSearchTrain.DEFAULT_GAMMA_END);
    final double cStop =
        holder.getDouble(SVMSearchFactory.PROPERTY_C2, false, SVMSearchTrain.DEFAULT_CONST_END);
    final double gammaStep =
        holder.getDouble(
            SVMSearchFactory.PROPERTY_GAMMA_STEP, false, SVMSearchTrain.DEFAULT_GAMMA_STEP);
    final double cStep =
        holder.getDouble(
            SVMSearchFactory.PROPERTY_C_STEP, false, SVMSearchTrain.DEFAULT_CONST_STEP);

    final SVMSearchTrain result = new SVMSearchTrain((SVM) method, training);

    result.setGammaBegin(gammaStart);
    result.setGammaEnd(gammaStop);
    result.setGammaStep(gammaStep);
    result.setConstBegin(cStart);
    result.setConstEnd(cStop);
    result.setConstStep(cStep);

    return result;
  }