public static void main(String[] args) { Logging.stopConsoleLogging(); NeuralDataSet trainingSet = new BasicNeuralDataSet(XOR_INPUT, XOR_IDEAL); BasicNetwork network = EncogUtility.simpleFeedForward(2, 4, 0, 1, false); ResilientPropagation train = new ResilientPropagation(network, trainingSet); train.addStrategy(new RequiredImprovementStrategy(5)); System.out.println("Perform initial train."); EncogUtility.trainToError(train, network, trainingSet, 0.01); TrainingContinuation cont = train.pause(); System.out.println( Arrays.toString((double[]) cont.getContents().get(ResilientPropagation.LAST_GRADIENTS))); System.out.println( Arrays.toString((double[]) cont.getContents().get(ResilientPropagation.UPDATE_VALUES))); try { SerializeObject.save("resume.ser", cont); cont = (TrainingContinuation) SerializeObject.load("resume.ser"); } catch (Exception ex) { ex.printStackTrace(); } System.out.println( "Now trying a second train, with continue from the first. Should stop after one iteration"); ResilientPropagation train2 = new ResilientPropagation(network, trainingSet); train2.resume(cont); EncogUtility.trainToError(train2, network, trainingSet, 0.01); }
public static void main(String args[]) { Logging.stopConsoleLogging(); BasicNetwork network = generateNetwork(); NeuralDataSet data = generateTraining(); double rprop = evaluateRPROP(network, data); double mprop = evaluateMPROP(network, data); double factor = rprop / mprop; System.out.println("Factor improvement:" + factor); }
public static void main(String[] args) { Logging.stopConsoleLogging(); try { EncogPersistence program = new EncogPersistence(); program.trainAndSave(); program.loadAndEvaluate(); } catch (Throwable t) { t.printStackTrace(); } }
public static void main(final String[] args) { Logging.stopConsoleLogging(); if (args.length < 1) { System.out.println("Must specify command file. See source for format."); } else { try { final ImageNeuralNetwork program = new ImageNeuralNetwork(); program.execute(args[0]); } catch (final Exception e) { e.printStackTrace(); } } }
public static void main(final String args[]) { Logging.stopConsoleLogging(); final TemporalXOR temp = new TemporalXOR(); final NeuralDataSet trainingSet = temp.generate(100); final BasicNetwork elmanNetwork = ElmanXOR.createElmanNetwork(); final BasicNetwork feedforwardNetwork = ElmanXOR.createFeedforwardNetwork(); final double elmanError = ElmanXOR.trainNetwork("Elman", elmanNetwork, trainingSet); final double feedforwardError = ElmanXOR.trainNetwork("Feedforward", feedforwardNetwork, trainingSet); System.out.println("Best error rate with Elman Network: " + elmanError); System.out.println("Best error rate with Feedforward Network: " + feedforwardError); System.out.println( "Elman should be able to get into the 30% range,\nfeedforward should not go below 50%.\nThe recurrent Elment net can learn better in this case."); System.out.println( "If your results are not as good, try rerunning, or perhaps training longer."); }
/** * The main method. * * @param args Args not really used. */ public static void main(final String args[]) { Logging.stopConsoleLogging(); (new OCR()).setVisible(true); }