/** * Extracts quaternions from the provided rotation matrix. * * @param R (Input) rotation matrix * @param quat (Output) Optional storage for quaternion. If null a new class will be used. * @return unit quaternion representation of the rotation matrix. */ public static Quaternion_F32 matrixToQuaternion(DenseMatrix64F R, Quaternion_F32 quat) { if (quat == null) quat = new Quaternion_F32(); // algorithm from: // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/ // // Designed to minimize numerical error by not dividing by very small numbers float m00 = (float) R.unsafe_get(0, 0); float m01 = (float) R.unsafe_get(0, 1); float m02 = (float) R.unsafe_get(0, 2); float m10 = (float) R.unsafe_get(1, 0); float m11 = (float) R.unsafe_get(1, 1); float m12 = (float) R.unsafe_get(1, 2); float m20 = (float) R.unsafe_get(2, 0); float m21 = (float) R.unsafe_get(2, 1); float m22 = (float) R.unsafe_get(2, 2); float trace = m00 + m11 + m22; if (trace > 0) { float S = (float) Math.sqrt(trace + 1.0f) * 2; // S=4*qw quat.w = 0.25f * S; quat.x = (m21 - m12) / S; quat.y = (m02 - m20) / S; quat.z = (m10 - m01) / S; } else if ((m00 > m11) & (m00 > m22)) { float S = (float) Math.sqrt(1.0f + m00 - m11 - m22) * 2; // S=4*qx quat.w = (m21 - m12) / S; quat.x = 0.25f * S; quat.y = (m01 + m10) / S; quat.z = (m02 + m20) / S; } else if (m11 > m22) { float S = (float) Math.sqrt(1.0f + m11 - m00 - m22) * 2; // S=4*qy quat.w = (m02 - m20) / S; quat.x = (m01 + m10) / S; quat.y = 0.25f * S; quat.z = (m12 + m21) / S; } else { float S = (float) Math.sqrt(1.0f + m22 - m00 - m11) * 2; // S=4*qz quat.w = (m10 - m01) / S; quat.x = (m02 + m20) / S; quat.y = (m12 + m21) / S; quat.z = 0.25f * S; } return quat; }
/** * Converts a rotation matrix into {@link georegression.struct.so.Rodrigues_F32}. * * @param R Rotation matrix. * @param rodrigues Storage used for solution. If null a new instance is declared. * @return The found axis and rotation angle. */ public static Rodrigues_F32 matrixToRodrigues(DenseMatrix64F R, Rodrigues_F32 rodrigues) { if (rodrigues == null) { rodrigues = new Rodrigues_F32(); } // parts of this are from wikipedia // http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rotation_matrix_.E2.86f.94_Euler_axis.2Fangle float diagSum = ((float) (R.unsafe_get(0, 0) + R.unsafe_get(1, 1) + R.unsafe_get(2, 2)) - 1.0f) / 2.0f; float absDiagSum = (float) Math.abs(diagSum); if (absDiagSum <= 1.0f && 1.0f - absDiagSum > 10.0f * GrlConstants.F_EPS) { // if numerically stable use a faster technique rodrigues.theta = (float) Math.acos(diagSum); float bottom = 2.0f * (float) Math.sin(rodrigues.theta); // in cases where bottom is close to zero that means theta is also close to zero and the // vector // doesn't matter that much rodrigues.unitAxisRotation.x = (float) (R.unsafe_get(2, 1) - R.unsafe_get(1, 2)) / bottom; rodrigues.unitAxisRotation.y = (float) (R.unsafe_get(0, 2) - R.unsafe_get(2, 0)) / bottom; rodrigues.unitAxisRotation.z = (float) (R.unsafe_get(1, 0) - R.unsafe_get(0, 1)) / bottom; // in extreme underflow situations the result can be unnormalized rodrigues.unitAxisRotation.normalize(); // In theory this might be more stable // rotationAxis( R, rodrigues.unitAxisRotation); } else { // this handles the special case where the bottom is very very small or equal to zero if (diagSum >= 1.0f) rodrigues.theta = 0; else if (diagSum <= -1.0f) rodrigues.theta = (float) Math.PI; else rodrigues.theta = (float) Math.acos(diagSum); // compute the value of x,y,z up to a sign ambiguity rodrigues.unitAxisRotation.x = (float) Math.sqrt((R.get(0, 0) + 1) / 2); rodrigues.unitAxisRotation.y = (float) Math.sqrt((R.get(1, 1) + 1) / 2); rodrigues.unitAxisRotation.z = (float) Math.sqrt((R.get(2, 2) + 1) / 2); float x = rodrigues.unitAxisRotation.x; float y = rodrigues.unitAxisRotation.y; float z = rodrigues.unitAxisRotation.z; if (Math.abs(R.get(1, 0) - 2 * x * y) > GrlConstants.F_EPS) { x *= -1; } if (Math.abs(R.get(2, 0) - 2 * x * z) > GrlConstants.F_EPS) { z *= -1; } if (Math.abs(R.get(2, 1) - 2 * z * y) > GrlConstants.F_EPS) { y *= -1; x *= -1; } rodrigues.unitAxisRotation.x = x; rodrigues.unitAxisRotation.y = y; rodrigues.unitAxisRotation.z = z; } return rodrigues; }
public Double get(int index) { return values.unsafe_get(index, 0); }