private void addToCluster(Map<Object, Cluster> clusters, Object fieldValue, Document document) { if (fieldValue == null) { return; } Cluster cluster = clusters.get(fieldValue); if (cluster == null) { cluster = new Cluster(); cluster.addPhrases(buildClusterLabel(fieldValue)); clusters.put(fieldValue, cluster); } cluster.addDocuments(document); }
/** * Create the junk (unassigned documents) cluster and create the final set of clusters in Carrot2 * format. */ private void postProcessing(ArrayList<ClusterCandidate> clusters) { // Adapt to Carrot2 classes, counting used documents on the way. final BitSet all = new BitSet(documents.size()); final ArrayList<Document> docs = Lists.newArrayListWithCapacity(documents.size()); final ArrayList<String> phrases = Lists.newArrayListWithCapacity(3); for (ClusterCandidate c : clusters) { final Cluster c2 = new Cluster(); c2.addPhrases(collectPhrases(phrases, c)); c2.addDocuments(collectDocuments(docs, c.documents)); c2.setScore((double) c.score); this.clusters.add(c2); all.or(c.documents); docs.clear(); phrases.clear(); } Cluster.appendOtherTopics(this.documents, this.clusters); }
/** * Creates a {@link Cluster} with the provided <code>phrase</code> to be used as the cluster's * label and <code>documents</code> contained in the cluster. * * @param phrase the phrase to form the cluster's label * @param documents documents contained in the cluster */ public Cluster(String phrase, Document... documents) { addPhrases(phrase); addDocuments(documents); }
/** * Performs the actual clustering with an assumption that all documents are written in one <code> * language</code>. */ private void cluster(LanguageCode language) { // Preprocessing of documents final PreprocessingContext context = preprocessingPipeline.preprocess(documents, query, language); // Further processing only if there are words to process clusters = Lists.newArrayList(); if (context.hasLabels()) { // Term-document matrix building and reduction final VectorSpaceModelContext vsmContext = new VectorSpaceModelContext(context); final ReducedVectorSpaceModelContext reducedVsmContext = new ReducedVectorSpaceModelContext(vsmContext); LingoProcessingContext lingoContext = new LingoProcessingContext(reducedVsmContext); matrixBuilder.buildTermDocumentMatrix(vsmContext); matrixBuilder.buildTermPhraseMatrix(vsmContext); matrixReducer.reduce( reducedVsmContext, computeClusterCount(desiredClusterCountBase, documents.size())); // Cluster label building clusterBuilder.buildLabels(lingoContext, matrixBuilder.termWeighting); // Document assignment clusterBuilder.assignDocuments(lingoContext); // Cluster merging clusterBuilder.merge(lingoContext); // Format final clusters final int[] clusterLabelIndex = lingoContext.clusterLabelFeatureIndex; final BitSet[] clusterDocuments = lingoContext.clusterDocuments; final double[] clusterLabelScore = lingoContext.clusterLabelScore; for (int i = 0; i < clusterLabelIndex.length; i++) { final Cluster cluster = new Cluster(); final int labelFeature = clusterLabelIndex[i]; if (labelFeature < 0) { // Cluster removed during merging continue; } // Add label and score cluster.addPhrases(labelFormatter.format(context, labelFeature)); cluster.setAttribute(Cluster.SCORE, clusterLabelScore[i]); // Add documents final BitSet bs = clusterDocuments[i]; for (int bit = bs.nextSetBit(0); bit >= 0; bit = bs.nextSetBit(bit + 1)) { cluster.addDocuments(documents.get(bit)); } // Add cluster clusters.add(cluster); } Collections.sort(clusters, Cluster.byReversedWeightedScoreAndSizeComparator(scoreWeight)); } Cluster.appendOtherTopics(documents, clusters); }