コード例 #1
0
  protected final void printCallInfo(
      final VariantContext vc,
      final double[] log10AlleleFrequencyPriors,
      final long runtimeNano,
      final AFCalcResult result) {
    printCallElement(vc, "type", "ignore", vc.getType());

    int allelei = 0;
    for (final Allele a : vc.getAlleles())
      printCallElement(vc, "allele", allelei++, a.getDisplayString());

    for (final Genotype g : vc.getGenotypes())
      printCallElement(vc, "PL", g.getSampleName(), g.getLikelihoodsString());

    for (int priorI = 0; priorI < log10AlleleFrequencyPriors.length; priorI++)
      printCallElement(vc, "priorI", priorI, log10AlleleFrequencyPriors[priorI]);

    printCallElement(vc, "runtime.nano", "ignore", runtimeNano);
    printCallElement(vc, "log10PosteriorOfAFEq0", "ignore", result.getLog10PosteriorOfAFEq0());
    printCallElement(vc, "log10PosteriorOfAFGt0", "ignore", result.getLog10PosteriorOfAFGT0());

    for (final Allele allele : result.getAllelesUsedInGenotyping()) {
      if (allele.isNonReference()) {
        printCallElement(vc, "MLE", allele, result.getAlleleCountAtMLE(allele));
        printCallElement(
            vc, "pNonRefByAllele", allele, result.getLog10PosteriorOfAFGt0ForAllele(allele));
      }
    }

    callReport.flush();
  }
コード例 #2
0
  protected void printVerboseData(
      String pos,
      VariantContext vc,
      double PofF,
      double phredScaledConfidence,
      final GenotypeLikelihoodsCalculationModel.Model model) {
    Allele refAllele = null, altAllele = null;
    for (Allele allele : vc.getAlleles()) {
      if (allele.isReference()) refAllele = allele;
      else altAllele = allele;
    }

    for (int i = 0; i <= N; i++) {
      StringBuilder AFline = new StringBuilder("AFINFO\t");
      AFline.append(pos);
      AFline.append("\t");
      AFline.append(refAllele);
      AFline.append("\t");
      if (altAllele != null) AFline.append(altAllele);
      else AFline.append("N/A");
      AFline.append("\t");
      AFline.append(i + "/" + N + "\t");
      AFline.append(String.format("%.2f\t", ((float) i) / N));
      AFline.append(String.format("%.8f\t", getAlleleFrequencyPriors(model)[i]));
      verboseWriter.println(AFline.toString());
    }

    verboseWriter.println("P(f>0) = " + PofF);
    verboseWriter.println("Qscore = " + phredScaledConfidence);
    verboseWriter.println();
  }
コード例 #3
0
  private VariantCallContext generateEmptyContext(
      RefMetaDataTracker tracker,
      ReferenceContext ref,
      Map<String, AlignmentContext> stratifiedContexts,
      AlignmentContext rawContext) {
    VariantContext vc;
    if (UAC.GenotypingMode
        == GenotypeLikelihoodsCalculationModel.GENOTYPING_MODE.GENOTYPE_GIVEN_ALLELES) {
      VariantContext vcInput =
          UnifiedGenotyperEngine.getVCFromAllelesRod(
              tracker, ref, rawContext.getLocation(), false, logger, UAC.alleles);
      if (vcInput == null) return null;
      vc =
          new VariantContextBuilder(
                  "UG_call",
                  ref.getLocus().getContig(),
                  vcInput.getStart(),
                  vcInput.getEnd(),
                  vcInput.getAlleles())
              .make();
    } else {
      // deal with bad/non-standard reference bases
      if (!Allele.acceptableAlleleBases(new byte[] {ref.getBase()})) return null;

      Set<Allele> alleles = new HashSet<Allele>();
      alleles.add(Allele.create(ref.getBase(), true));
      vc =
          new VariantContextBuilder(
                  "UG_call",
                  ref.getLocus().getContig(),
                  ref.getLocus().getStart(),
                  ref.getLocus().getStart(),
                  alleles)
              .make();
    }

    if (annotationEngine != null) {
      // Note: we want to use the *unfiltered* and *unBAQed* context for the annotations
      final ReadBackedPileup pileup = rawContext.getBasePileup();
      stratifiedContexts = AlignmentContextUtils.splitContextBySampleName(pileup);

      vc = annotationEngine.annotateContext(tracker, ref, stratifiedContexts, vc);
    }

    return new VariantCallContext(vc, false);
  }
コード例 #4
0
  /**
   * Read in a list of ExactCall objects from reader, keeping only those with starts in startsToKeep
   * or all sites (if this is empty)
   *
   * @param reader a just-opened reader sitting at the start of the file
   * @param startsToKeep a list of start position of the calls to keep, or empty if all calls should
   *     be kept
   * @param parser a genome loc parser to create genome locs
   * @return a list of ExactCall objects in reader
   * @throws IOException
   */
  public static List<ExactCall> readExactLog(
      final BufferedReader reader, final List<Integer> startsToKeep, GenomeLocParser parser)
      throws IOException {
    if (reader == null) throw new IllegalArgumentException("reader cannot be null");
    if (startsToKeep == null) throw new IllegalArgumentException("startsToKeep cannot be null");
    if (parser == null) throw new IllegalArgumentException("GenomeLocParser cannot be null");

    List<ExactCall> calls = new LinkedList<ExactCall>();

    // skip the header line
    reader.readLine();

    // skip the first "type" line
    reader.readLine();

    while (true) {
      final VariantContextBuilder builder = new VariantContextBuilder();
      final List<Allele> alleles = new ArrayList<Allele>();
      final List<Genotype> genotypes = new ArrayList<Genotype>();
      final double[] posteriors = new double[2];
      final double[] priors = MathUtils.normalizeFromLog10(new double[] {0.5, 0.5}, true);
      final List<Integer> mle = new ArrayList<Integer>();
      final Map<Allele, Double> log10pNonRefByAllele = new HashMap<Allele, Double>();
      long runtimeNano = -1;

      GenomeLoc currentLoc = null;
      while (true) {
        final String line = reader.readLine();
        if (line == null) return calls;

        final String[] parts = line.split("\t");
        final GenomeLoc lineLoc = parser.parseGenomeLoc(parts[0]);
        final String variable = parts[1];
        final String key = parts[2];
        final String value = parts[3];

        if (currentLoc == null) currentLoc = lineLoc;

        if (variable.equals("type")) {
          if (startsToKeep.isEmpty() || startsToKeep.contains(currentLoc.getStart())) {
            builder.alleles(alleles);
            final int stop = currentLoc.getStart() + alleles.get(0).length() - 1;
            builder.chr(currentLoc.getContig()).start(currentLoc.getStart()).stop(stop);
            builder.genotypes(genotypes);
            final int[] mleInts = ArrayUtils.toPrimitive(mle.toArray(new Integer[] {}));
            final AFCalcResult result =
                new AFCalcResult(mleInts, 1, alleles, posteriors, priors, log10pNonRefByAllele);
            calls.add(new ExactCall(builder.make(), runtimeNano, result));
          }
          break;
        } else if (variable.equals("allele")) {
          final boolean isRef = key.equals("0");
          alleles.add(Allele.create(value, isRef));
        } else if (variable.equals("PL")) {
          final GenotypeBuilder gb = new GenotypeBuilder(key);
          gb.PL(GenotypeLikelihoods.fromPLField(value).getAsPLs());
          genotypes.add(gb.make());
        } else if (variable.equals("log10PosteriorOfAFEq0")) {
          posteriors[0] = Double.valueOf(value);
        } else if (variable.equals("log10PosteriorOfAFGt0")) {
          posteriors[1] = Double.valueOf(value);
        } else if (variable.equals("MLE")) {
          mle.add(Integer.valueOf(value));
        } else if (variable.equals("pNonRefByAllele")) {
          final Allele a = Allele.create(key);
          log10pNonRefByAllele.put(a, Double.valueOf(value));
        } else if (variable.equals("runtime.nano")) {
          runtimeNano = Long.valueOf(value);
        } else {
          // nothing to do
        }
      }
    }
  }
コード例 #5
0
  /**
   * Main entry function to calculate genotypes of a given VC with corresponding GL's
   *
   * @param tracker Tracker
   * @param refContext Reference context
   * @param rawContext Raw context
   * @param stratifiedContexts Stratified alignment contexts
   * @param vc Input VC
   * @param model GL calculation model
   * @param inheritAttributesFromInputVC Output VC will contain attributes inherited from input vc
   * @return VC with assigned genotypes
   */
  public VariantCallContext calculateGenotypes(
      final RefMetaDataTracker tracker,
      final ReferenceContext refContext,
      final AlignmentContext rawContext,
      Map<String, AlignmentContext> stratifiedContexts,
      final VariantContext vc,
      final GenotypeLikelihoodsCalculationModel.Model model,
      final boolean inheritAttributesFromInputVC,
      final Map<String, org.broadinstitute.sting.utils.genotyper.PerReadAlleleLikelihoodMap>
          perReadAlleleLikelihoodMap) {

    boolean limitedContext =
        tracker == null || refContext == null || rawContext == null || stratifiedContexts == null;

    // initialize the data for this thread if that hasn't been done yet
    if (afcm.get() == null) {
      afcm.set(AFCalcFactory.createAFCalc(UAC, N, logger));
    }

    // estimate our confidence in a reference call and return
    if (vc.getNSamples() == 0) {
      if (limitedContext) return null;
      return (UAC.OutputMode != OUTPUT_MODE.EMIT_ALL_SITES
          ? estimateReferenceConfidence(vc, stratifiedContexts, getTheta(model), false, 1.0)
          : generateEmptyContext(tracker, refContext, stratifiedContexts, rawContext));
    }

    AFCalcResult AFresult = afcm.get().getLog10PNonRef(vc, getAlleleFrequencyPriors(model));

    // is the most likely frequency conformation AC=0 for all alternate alleles?
    boolean bestGuessIsRef = true;

    // determine which alternate alleles have AF>0
    final List<Allele> myAlleles = new ArrayList<Allele>(vc.getAlleles().size());
    final List<Integer> alleleCountsofMLE = new ArrayList<Integer>(vc.getAlleles().size());
    myAlleles.add(vc.getReference());
    for (int i = 0; i < AFresult.getAllelesUsedInGenotyping().size(); i++) {
      final Allele alternateAllele = AFresult.getAllelesUsedInGenotyping().get(i);
      if (alternateAllele.isReference()) continue;

      // we are non-ref if the probability of being non-ref > the emit confidence.
      // the emit confidence is phred-scaled, say 30 => 10^-3.
      // the posterior AF > 0 is log10: -5 => 10^-5
      // we are non-ref if 10^-5 < 10^-3 => -5 < -3
      final boolean isNonRef =
          AFresult.isPolymorphic(alternateAllele, UAC.STANDARD_CONFIDENCE_FOR_EMITTING / -10.0);

      // if the most likely AC is not 0, then this is a good alternate allele to use
      if (isNonRef) {
        myAlleles.add(alternateAllele);
        alleleCountsofMLE.add(AFresult.getAlleleCountAtMLE(alternateAllele));
        bestGuessIsRef = false;
      }
      // if in GENOTYPE_GIVEN_ALLELES mode, we still want to allow the use of a poor allele
      else if (UAC.GenotypingMode
          == GenotypeLikelihoodsCalculationModel.GENOTYPING_MODE.GENOTYPE_GIVEN_ALLELES) {
        myAlleles.add(alternateAllele);
        alleleCountsofMLE.add(AFresult.getAlleleCountAtMLE(alternateAllele));
      }
    }

    final double PoFGT0 = Math.pow(10, AFresult.getLog10PosteriorOfAFGT0());

    // note the math.abs is necessary because -10 * 0.0 => -0.0 which isn't nice
    final double phredScaledConfidence =
        Math.abs(
            !bestGuessIsRef
                    || UAC.GenotypingMode
                        == GenotypeLikelihoodsCalculationModel.GENOTYPING_MODE
                            .GENOTYPE_GIVEN_ALLELES
                ? -10 * AFresult.getLog10PosteriorOfAFEq0()
                : -10 * AFresult.getLog10PosteriorOfAFGT0());

    // return a null call if we don't pass the confidence cutoff or the most likely allele frequency
    // is zero
    if (UAC.OutputMode != OUTPUT_MODE.EMIT_ALL_SITES
        && !passesEmitThreshold(phredScaledConfidence, bestGuessIsRef)) {
      // technically, at this point our confidence in a reference call isn't accurately estimated
      //  because it didn't take into account samples with no data, so let's get a better estimate
      return limitedContext
          ? null
          : estimateReferenceConfidence(vc, stratifiedContexts, getTheta(model), true, PoFGT0);
    }

    // start constructing the resulting VC
    final GenomeLoc loc = genomeLocParser.createGenomeLoc(vc);
    final VariantContextBuilder builder =
        new VariantContextBuilder(
            "UG_call", loc.getContig(), loc.getStart(), loc.getStop(), myAlleles);
    builder.log10PError(phredScaledConfidence / -10.0);
    if (!passesCallThreshold(phredScaledConfidence)) builder.filters(filter);

    // create the genotypes
    final GenotypesContext genotypes = afcm.get().subsetAlleles(vc, myAlleles, true, ploidy);
    builder.genotypes(genotypes);

    // print out stats if we have a writer
    if (verboseWriter != null && !limitedContext)
      printVerboseData(refContext.getLocus().toString(), vc, PoFGT0, phredScaledConfidence, model);

    // *** note that calculating strand bias involves overwriting data structures, so we do that
    // last
    final HashMap<String, Object> attributes = new HashMap<String, Object>();

    // inherit attributed from input vc if requested
    if (inheritAttributesFromInputVC) attributes.putAll(vc.getAttributes());
    // if the site was downsampled, record that fact
    if (!limitedContext && rawContext.hasPileupBeenDownsampled())
      attributes.put(VCFConstants.DOWNSAMPLED_KEY, true);

    if (UAC.ANNOTATE_NUMBER_OF_ALLELES_DISCOVERED)
      attributes.put(NUMBER_OF_DISCOVERED_ALLELES_KEY, vc.getAlternateAlleles().size());

    // add the MLE AC and AF annotations
    if (alleleCountsofMLE.size() > 0) {
      attributes.put(VCFConstants.MLE_ALLELE_COUNT_KEY, alleleCountsofMLE);
      final int AN = builder.make().getCalledChrCount();
      final ArrayList<Double> MLEfrequencies = new ArrayList<Double>(alleleCountsofMLE.size());
      // the MLEAC is allowed to be larger than the AN (e.g. in the case of all PLs being 0, the GT
      // is ./. but the exact model may arbitrarily choose an AC>1)
      for (int AC : alleleCountsofMLE) MLEfrequencies.add(Math.min(1.0, (double) AC / (double) AN));
      attributes.put(VCFConstants.MLE_ALLELE_FREQUENCY_KEY, MLEfrequencies);
    }

    if (UAC.COMPUTE_SLOD && !limitedContext && !bestGuessIsRef) {
      // final boolean DEBUG_SLOD = false;

      // the overall lod
      // double overallLog10PofNull = AFresult.log10AlleleFrequencyPosteriors[0];
      double overallLog10PofF = AFresult.getLog10LikelihoodOfAFGT0();
      // if ( DEBUG_SLOD ) System.out.println("overallLog10PofF=" + overallLog10PofF);

      List<Allele> allAllelesToUse = builder.make().getAlleles();

      // the forward lod
      VariantContext vcForward =
          calculateLikelihoods(
              tracker,
              refContext,
              stratifiedContexts,
              AlignmentContextUtils.ReadOrientation.FORWARD,
              allAllelesToUse,
              false,
              model,
              perReadAlleleLikelihoodMap);
      AFresult = afcm.get().getLog10PNonRef(vcForward, getAlleleFrequencyPriors(model));
      // double[] normalizedLog10Posteriors =
      // MathUtils.normalizeFromLog10(AFresult.log10AlleleFrequencyPosteriors, true);
      double forwardLog10PofNull = AFresult.getLog10LikelihoodOfAFEq0();
      double forwardLog10PofF = AFresult.getLog10LikelihoodOfAFGT0();
      // if ( DEBUG_SLOD ) System.out.println("forwardLog10PofNull=" + forwardLog10PofNull + ",
      // forwardLog10PofF=" + forwardLog10PofF);

      // the reverse lod
      VariantContext vcReverse =
          calculateLikelihoods(
              tracker,
              refContext,
              stratifiedContexts,
              AlignmentContextUtils.ReadOrientation.REVERSE,
              allAllelesToUse,
              false,
              model,
              perReadAlleleLikelihoodMap);
      AFresult = afcm.get().getLog10PNonRef(vcReverse, getAlleleFrequencyPriors(model));
      // normalizedLog10Posteriors =
      // MathUtils.normalizeFromLog10(AFresult.log10AlleleFrequencyPosteriors, true);
      double reverseLog10PofNull = AFresult.getLog10LikelihoodOfAFEq0();
      double reverseLog10PofF = AFresult.getLog10LikelihoodOfAFGT0();
      // if ( DEBUG_SLOD ) System.out.println("reverseLog10PofNull=" + reverseLog10PofNull + ",
      // reverseLog10PofF=" + reverseLog10PofF);

      double forwardLod = forwardLog10PofF + reverseLog10PofNull - overallLog10PofF;
      double reverseLod = reverseLog10PofF + forwardLog10PofNull - overallLog10PofF;
      // if ( DEBUG_SLOD ) System.out.println("forward lod=" + forwardLod + ", reverse lod=" +
      // reverseLod);

      // strand score is max bias between forward and reverse strands
      double strandScore = Math.max(forwardLod, reverseLod);
      // rescale by a factor of 10
      strandScore *= 10.0;
      // logger.debug(String.format("SLOD=%f", strandScore));

      if (!Double.isNaN(strandScore)) attributes.put("SB", strandScore);
    }

    // finish constructing the resulting VC
    builder.attributes(attributes);
    VariantContext vcCall = builder.make();

    // if we are subsetting alleles (either because there were too many or because some were not
    // polymorphic)
    // then we may need to trim the alleles (because the original VariantContext may have had to pad
    // at the end).
    if (myAlleles.size() != vc.getAlleles().size()
        && !limitedContext) // limitedContext callers need to handle allele trimming on their own to
                            // keep their perReadAlleleLikelihoodMap alleles in sync
    vcCall = VariantContextUtils.reverseTrimAlleles(vcCall);

    if (annotationEngine != null
        && !limitedContext) { // limitedContext callers need to handle annotations on their own by
                              // calling their own annotationEngine
      // Note: we want to use the *unfiltered* and *unBAQed* context for the annotations
      final ReadBackedPileup pileup = rawContext.getBasePileup();
      stratifiedContexts = AlignmentContextUtils.splitContextBySampleName(pileup);

      vcCall =
          annotationEngine.annotateContext(
              tracker, refContext, stratifiedContexts, vcCall, perReadAlleleLikelihoodMap);
    }

    return new VariantCallContext(vcCall, confidentlyCalled(phredScaledConfidence, PoFGT0));
  }