private Map<String, Object> calculateIC(final VariantContext vc) { final GenotypesContext genotypes = (founderIds == null || founderIds.isEmpty()) ? vc.getGenotypes() : vc.getGenotypes(founderIds); if (genotypes == null || genotypes.size() < MIN_SAMPLES) return null; int idxAA = 0, idxAB = 1, idxBB = 2; if (!vc.isBiallelic()) { // for non-bliallelic case, do test with most common alt allele. // Get then corresponding indeces in GL vectors to retrieve GL of AA,AB and BB. int[] idxVector = vc.getGLIndecesOfAlternateAllele(vc.getAltAlleleWithHighestAlleleCount()); idxAA = idxVector[0]; idxAB = idxVector[1]; idxBB = idxVector[2]; } double refCount = 0.0; double hetCount = 0.0; double homCount = 0.0; int N = 0; // number of samples that have likelihoods for (final Genotype g : genotypes) { if (g.isNoCall() || !g.hasLikelihoods()) continue; if (g.getPloidy() != 2) // only work for diploid samples continue; N++; final double[] normalizedLikelihoods = MathUtils.normalizeFromLog10(g.getLikelihoods().getAsVector()); refCount += normalizedLikelihoods[idxAA]; hetCount += normalizedLikelihoods[idxAB]; homCount += normalizedLikelihoods[idxBB]; } if (N < MIN_SAMPLES) { return null; } final double p = (2.0 * refCount + hetCount) / (2.0 * (refCount + hetCount + homCount)); // expected reference allele frequency final double q = 1.0 - p; // expected alternative allele frequency final double F = 1.0 - (hetCount / (2.0 * p * q * (double) N)); // inbreeding coefficient Map<String, Object> map = new HashMap<String, Object>(); map.put(getKeyNames().get(0), String.format("%.4f", F)); return map; }
public void writeBeagleOutput( VariantContext preferredVC, VariantContext otherVC, boolean isValidationSite, double prior) { GenomeLoc currentLoc = VariantContextUtils.getLocation(getToolkit().getGenomeLocParser(), preferredVC); StringBuffer beagleOut = new StringBuffer(); String marker = String.format("%s:%d ", currentLoc.getContig(), currentLoc.getStart()); beagleOut.append(marker); if (markers != null) markers.append(marker).append("\t").append(Integer.toString(markerCounter++)).append("\t"); for (Allele allele : preferredVC.getAlleles()) { String bglPrintString; if (allele.isNoCall() || allele.isNull()) bglPrintString = "-"; else bglPrintString = allele.getBaseString(); // get rid of * in case of reference allele beagleOut.append(String.format("%s ", bglPrintString)); if (markers != null) markers.append(bglPrintString).append("\t"); } if (markers != null) markers.append("\n"); GenotypesContext preferredGenotypes = preferredVC.getGenotypes(); GenotypesContext otherGenotypes = goodSite(otherVC) ? otherVC.getGenotypes() : null; for (String sample : samples) { boolean isMaleOnChrX = CHECK_IS_MALE_ON_CHR_X && getSample(sample).getGender() == Gender.MALE; Genotype genotype; boolean isValidation; // use sample as key into genotypes structure if (preferredGenotypes.containsSample(sample)) { genotype = preferredGenotypes.get(sample); isValidation = isValidationSite; } else if (otherGenotypes != null && otherGenotypes.containsSample(sample)) { genotype = otherGenotypes.get(sample); isValidation = !isValidationSite; } else { // there is magically no genotype for this sample. throw new StingException( "Sample " + sample + " arose with no genotype in variant or validation VCF. This should never happen."); } /* * Use likelihoods if: is validation, prior is negative; or: is not validation, has genotype key */ double[] log10Likelihoods = null; if ((isValidation && prior < 0.0) || genotype.hasLikelihoods()) { log10Likelihoods = genotype.getLikelihoods().getAsVector(); // see if we need to randomly mask out genotype in this position. if (GenomeAnalysisEngine.getRandomGenerator().nextDouble() <= insertedNoCallRate) { // we are masking out this genotype log10Likelihoods = isMaleOnChrX ? HAPLOID_FLAT_LOG10_LIKELIHOODS : DIPLOID_FLAT_LOG10_LIKELIHOODS; } if (isMaleOnChrX) { log10Likelihoods[1] = -255; // todo -- warning this is dangerous for multi-allele case } } /** otherwise, use the prior uniformly */ else if (!isValidation && genotype.isCalled() && !genotype.hasLikelihoods()) { // hack to deal with input VCFs with no genotype likelihoods. Just assume the called // genotype // is confident. This is useful for Hapmap and 1KG release VCFs. double AA = (1.0 - prior) / 2.0; double AB = (1.0 - prior) / 2.0; double BB = (1.0 - prior) / 2.0; if (genotype.isHomRef()) { AA = prior; } else if (genotype.isHet()) { AB = prior; } else if (genotype.isHomVar()) { BB = prior; } log10Likelihoods = MathUtils.toLog10(new double[] {AA, isMaleOnChrX ? 0.0 : AB, BB}); } else { log10Likelihoods = isMaleOnChrX ? HAPLOID_FLAT_LOG10_LIKELIHOODS : DIPLOID_FLAT_LOG10_LIKELIHOODS; } writeSampleLikelihoods(beagleOut, preferredVC, log10Likelihoods); } beagleWriter.println(beagleOut.toString()); }