private Haplotype getHaplotypeFromRead( final PileupElement p, final int contextSize, final int locus) { final GATKSAMRecord read = p.getRead(); int readOffsetFromPileup = p.getOffset(); final byte[] haplotypeBases = new byte[contextSize]; Arrays.fill(haplotypeBases, (byte) REGEXP_WILDCARD); final double[] baseQualities = new double[contextSize]; Arrays.fill(baseQualities, 0.0); byte[] readBases = read.getReadBases(); readBases = AlignmentUtils.readToAlignmentByteArray( read.getCigar(), readBases); // Adjust the read bases based on the Cigar string byte[] readQuals = read.getBaseQualities(); readQuals = AlignmentUtils.readToAlignmentByteArray( read.getCigar(), readQuals); // Shift the location of the qual scores based on the Cigar string readOffsetFromPileup = AlignmentUtils.calcAlignmentByteArrayOffset( read.getCigar(), p, read.getAlignmentStart(), locus); final int baseOffsetStart = readOffsetFromPileup - (contextSize - 1) / 2; for (int i = 0; i < contextSize; i++) { final int baseOffset = i + baseOffsetStart; if (baseOffset < 0) { continue; } if (baseOffset >= readBases.length) { break; } if (readQuals[baseOffset] == PileupElement.DELETION_BASE) { readQuals[baseOffset] = PileupElement.DELETION_QUAL; } if (!BaseUtils.isRegularBase(readBases[baseOffset])) { readBases[baseOffset] = (byte) REGEXP_WILDCARD; readQuals[baseOffset] = (byte) 0; } // N's shouldn't be treated as distinct bases readQuals[baseOffset] = (byte) Math.min((int) readQuals[baseOffset], p.getMappingQual()); if (((int) readQuals[baseOffset]) < 5) { readQuals[baseOffset] = (byte) 0; } // quals less than 5 are used as codes and don't have actual probabilistic meaning behind // them haplotypeBases[i] = readBases[baseOffset]; baseQualities[i] = (double) readQuals[baseOffset]; } return new Haplotype(haplotypeBases, baseQualities); }
/** * Hard clip the read to the variable region (from refStart to refStop) * * @param read the read to be clipped * @param refStart the beginning of the variant region (inclusive) * @param refStop the end of the variant region (inclusive) * @return the read hard clipped to the variant region */ public static GATKSAMRecord hardClipToRegion( final GATKSAMRecord read, final int refStart, final int refStop) { final int start = read.getAlignmentStart(); final int stop = read.getAlignmentEnd(); // check if the read is contained in region if (start <= refStop && stop >= refStart) { if (start < refStart && stop > refStop) return hardClipBothEndsByReferenceCoordinates(read, refStart - 1, refStop + 1); else if (start < refStart) return hardClipByReferenceCoordinatesLeftTail(read, refStart - 1); else if (stop > refStop) return hardClipByReferenceCoordinatesRightTail(read, refStop + 1); return read; } else return GATKSAMRecord.emptyRead(read); }
/** * Hard clips away soft clipped bases that are below the given quality threshold * * @param read the read * @param minQual the mininum base quality score to revert the base (inclusive) * @return a new read without low quality soft clipped bases */ public static GATKSAMRecord hardClipLowQualitySoftClips(GATKSAMRecord read, byte minQual) { int nLeadingSoftClips = read.getAlignmentStart() - read.getSoftStart(); if (read.isEmpty() || nLeadingSoftClips > read.getReadLength()) return GATKSAMRecord.emptyRead(read); byte[] quals = read.getBaseQualities(EventType.BASE_SUBSTITUTION); int left = -1; if (nLeadingSoftClips > 0) { for (int i = nLeadingSoftClips - 1; i >= 0; i--) { if (quals[i] >= minQual) left = i; else break; } } int right = -1; int nTailingSoftClips = read.getSoftEnd() - read.getAlignmentEnd(); if (nTailingSoftClips > 0) { for (int i = read.getReadLength() - nTailingSoftClips; i < read.getReadLength(); i++) { if (quals[i] >= minQual) right = i; else break; } } GATKSAMRecord clippedRead = read; if (right >= 0 && right + 1 < clippedRead .getReadLength()) // only clip if there are softclipped bases (right >= 0) and the // first high quality soft clip is not the last base (right+1 < // readlength) clippedRead = hardClipByReadCoordinates( clippedRead, right + 1, clippedRead.getReadLength() - 1); // first we hard clip the low quality soft clips on the right tail if (left >= 0 && left - 1 > 0) // only clip if there are softclipped bases (left >= 0) and the first high quality // soft clip is not the last base (left-1 > 0) clippedRead = hardClipByReadCoordinates( clippedRead, 0, left - 1); // then we hard clip the low quality soft clips on the left tail return clippedRead; }
private ArrayList<Allele> computeConsensusAlleles( ReferenceContext ref, Map<String, AlignmentContext> contexts, AlignmentContextUtils.ReadOrientation contextType) { Allele refAllele = null, altAllele = null; GenomeLoc loc = ref.getLocus(); ArrayList<Allele> aList = new ArrayList<Allele>(); HashMap<String, Integer> consensusIndelStrings = new HashMap<String, Integer>(); int insCount = 0, delCount = 0; // quick check of total number of indels in pileup for (Map.Entry<String, AlignmentContext> sample : contexts.entrySet()) { AlignmentContext context = AlignmentContextUtils.stratify(sample.getValue(), contextType); final ReadBackedExtendedEventPileup indelPileup = context.getExtendedEventPileup(); insCount += indelPileup.getNumberOfInsertions(); delCount += indelPileup.getNumberOfDeletions(); } if (insCount < minIndelCountForGenotyping && delCount < minIndelCountForGenotyping) return aList; for (Map.Entry<String, AlignmentContext> sample : contexts.entrySet()) { // todo -- warning, can be duplicating expensive partition here AlignmentContext context = AlignmentContextUtils.stratify(sample.getValue(), contextType); final ReadBackedExtendedEventPileup indelPileup = context.getExtendedEventPileup(); for (ExtendedEventPileupElement p : indelPileup.toExtendedIterable()) { // SAMRecord read = p.getRead(); GATKSAMRecord read = ReadUtils.hardClipAdaptorSequence(p.getRead()); if (read == null) continue; if (ReadUtils.is454Read(read)) { continue; } /* if (DEBUG && p.isIndel()) { System.out.format("Read: %s, cigar: %s, aln start: %d, aln end: %d, p.len:%d, Type:%s, EventBases:%s\n", read.getReadName(),read.getCigar().toString(),read.getAlignmentStart(),read.getAlignmentEnd(), p.getEventLength(),p.getType().toString(), p.getEventBases()); } */ String indelString = p.getEventBases(); if (p.isInsertion()) { boolean foundKey = false; if (read.getAlignmentEnd() == loc.getStart()) { // first corner condition: a read has an insertion at the end, and we're right at the // insertion. // In this case, the read could have any of the inserted bases and we need to build a // consensus for (String s : consensusIndelStrings.keySet()) { int cnt = consensusIndelStrings.get(s); if (s.startsWith(indelString)) { // case 1: current insertion is prefix of indel in hash map consensusIndelStrings.put(s, cnt + 1); foundKey = true; break; } else if (indelString.startsWith(s)) { // case 2: indel stored in hash table is prefix of current insertion // In this case, new bases are new key. consensusIndelStrings.remove(s); consensusIndelStrings.put(indelString, cnt + 1); foundKey = true; break; } } if (!foundKey) // none of the above: event bases not supported by previous table, so add new key consensusIndelStrings.put(indelString, 1); } else if (read.getAlignmentStart() == loc.getStart() + 1) { // opposite corner condition: read will start at current locus with an insertion for (String s : consensusIndelStrings.keySet()) { int cnt = consensusIndelStrings.get(s); if (s.endsWith(indelString)) { // case 1: current insertion is suffix of indel in hash map consensusIndelStrings.put(s, cnt + 1); foundKey = true; break; } else if (indelString.endsWith(s)) { // case 2: indel stored in hash table is suffix of current insertion // In this case, new bases are new key. consensusIndelStrings.remove(s); consensusIndelStrings.put(indelString, cnt + 1); foundKey = true; break; } } if (!foundKey) // none of the above: event bases not supported by previous table, so add new key consensusIndelStrings.put(indelString, 1); } else { // normal case: insertion somewhere in the middle of a read: add count to hash map int cnt = consensusIndelStrings.containsKey(indelString) ? consensusIndelStrings.get(indelString) : 0; consensusIndelStrings.put(indelString, cnt + 1); } } else if (p.isDeletion()) { indelString = String.format("D%d", p.getEventLength()); int cnt = consensusIndelStrings.containsKey(indelString) ? consensusIndelStrings.get(indelString) : 0; consensusIndelStrings.put(indelString, cnt + 1); } } /* if (DEBUG) { int icount = indelPileup.getNumberOfInsertions(); int dcount = indelPileup.getNumberOfDeletions(); if (icount + dcount > 0) { List<Pair<String,Integer>> eventStrings = indelPileup.getEventStringsWithCounts(ref.getBases()); System.out.format("#ins: %d, #del:%d\n", insCount, delCount); for (int i=0 ; i < eventStrings.size() ; i++ ) { System.out.format("%s:%d,",eventStrings.get(i).first,eventStrings.get(i).second); // int k=0; } System.out.println(); } } */ } int maxAlleleCnt = 0; String bestAltAllele = ""; for (String s : consensusIndelStrings.keySet()) { int curCnt = consensusIndelStrings.get(s); if (curCnt > maxAlleleCnt) { maxAlleleCnt = curCnt; bestAltAllele = s; } // if (DEBUG) // System.out.format("Key:%s, number: %d\n",s,consensusIndelStrings.get(s) ); } // gdebug- if (maxAlleleCnt < minIndelCountForGenotyping) return aList; if (bestAltAllele.startsWith("D")) { // get deletion length int dLen = Integer.valueOf(bestAltAllele.substring(1)); // get ref bases of accurate deletion int startIdxInReference = (int) (1 + loc.getStart() - ref.getWindow().getStart()); // System.out.println(new String(ref.getBases())); byte[] refBases = Arrays.copyOfRange(ref.getBases(), startIdxInReference, startIdxInReference + dLen); if (Allele.acceptableAlleleBases(refBases)) { refAllele = Allele.create(refBases, true); altAllele = Allele.create(Allele.NULL_ALLELE_STRING, false); } } else { // insertion case if (Allele.acceptableAlleleBases(bestAltAllele)) { refAllele = Allele.create(Allele.NULL_ALLELE_STRING, true); altAllele = Allele.create(bestAltAllele, false); } } if (refAllele != null && altAllele != null) { aList.add(0, refAllele); aList.add(1, altAllele); } return aList; }
@Override public T traverse( final ActiveRegionWalker<M, T> walker, final LocusShardDataProvider dataProvider, T sum) { logger.debug(String.format("TraverseActiveRegion.traverse: Shard is %s", dataProvider)); final LocusView locusView = getLocusView(walker, dataProvider); final GenomeLocSortedSet initialIntervals = engine.getIntervals(); final LocusReferenceView referenceView = new LocusReferenceView(walker, dataProvider); final int activeRegionExtension = walker.getClass().getAnnotation(ActiveRegionExtension.class).extension(); final int maxRegionSize = walker.getClass().getAnnotation(ActiveRegionExtension.class).maxRegion(); if (locusView .hasNext()) { // trivial optimization to avoid unnecessary processing when there's nothing // here at all int minStart = Integer.MAX_VALUE; ActivityProfile profile = new ActivityProfile(engine.getGenomeLocParser(), walker.hasPresetActiveRegions()); ReferenceOrderedView referenceOrderedDataView = getReferenceOrderedView(walker, dataProvider, locusView); // We keep processing while the next reference location is within the interval GenomeLoc prevLoc = null; while (locusView.hasNext()) { final AlignmentContext locus = locusView.next(); GenomeLoc location = locus.getLocation(); if (prevLoc != null) { // fill in the active / inactive labels from the stop of the previous location to the // start of this location // TODO refactor to separate function for (int iii = prevLoc.getStop() + 1; iii < location.getStart(); iii++) { final GenomeLoc fakeLoc = engine.getGenomeLocParser().createGenomeLoc(prevLoc.getContig(), iii, iii); if (initialIntervals == null || initialIntervals.overlaps(fakeLoc)) { profile.add( fakeLoc, new ActivityProfileResult( walker.hasPresetActiveRegions() && walker.presetActiveRegions.overlaps(fakeLoc) ? 1.0 : 0.0)); } } } dataProvider.getShard().getReadMetrics().incrementNumIterations(); // create reference context. Note that if we have a pileup of "extended events", the context // will // hold the (longest) stretch of deleted reference bases (if deletions are present in the // pileup). final ReferenceContext refContext = referenceView.getReferenceContext(location); // Iterate forward to get all reference ordered data covering this location final RefMetaDataTracker tracker = referenceOrderedDataView.getReferenceOrderedDataAtLocus( locus.getLocation(), refContext); // Call the walkers isActive function for this locus and add them to the list to be // integrated later if (initialIntervals == null || initialIntervals.overlaps(location)) { profile.add(location, walkerActiveProb(walker, tracker, refContext, locus, location)); } // Grab all the previously unseen reads from this pileup and add them to the massive read // list for (final PileupElement p : locus.getBasePileup()) { final GATKSAMRecord read = p.getRead(); if (!myReads.contains(read)) { myReads.add(read); } // If this is the last pileup for this shard calculate the minimum alignment start so that // we know // which active regions in the work queue are now safe to process minStart = Math.min(minStart, read.getAlignmentStart()); } prevLoc = location; printProgress(locus.getLocation()); } updateCumulativeMetrics(dataProvider.getShard()); // Take the individual isActive calls and integrate them into contiguous active regions and // add these blocks of work to the work queue // band-pass filter the list of isActive probabilities and turn into active regions final ActivityProfile bandPassFiltered = profile.bandPassFilter(); final List<ActiveRegion> activeRegions = bandPassFiltered.createActiveRegions(activeRegionExtension, maxRegionSize); // add active regions to queue of regions to process // first check if can merge active regions over shard boundaries if (!activeRegions.isEmpty()) { if (!workQueue.isEmpty()) { final ActiveRegion last = workQueue.getLast(); final ActiveRegion first = activeRegions.get(0); if (last.isActive == first.isActive && last.getLocation().contiguousP(first.getLocation()) && last.getLocation().size() + first.getLocation().size() <= maxRegionSize) { workQueue.removeLast(); activeRegions.remove(first); workQueue.add( new ActiveRegion( last.getLocation().union(first.getLocation()), first.isActive, this.engine.getGenomeLocParser(), activeRegionExtension)); } } workQueue.addAll(activeRegions); } logger.debug( "Integrated " + profile.size() + " isActive calls into " + activeRegions.size() + " regions."); // now go and process all of the active regions sum = processActiveRegions(walker, sum, minStart, dataProvider.getLocus().getContig()); } return sum; }
private double scoreReadAgainstHaplotype( final PileupElement p, final int contextSize, final Haplotype haplotype, final int locus) { double expected = 0.0; double mismatches = 0.0; // What's the expected mismatch rate under the model that this read is actually sampled from // this haplotype? Let's assume the consensus base c is a random choice one of A, C, G, or T, // and that // the observed base is actually from a c with an error rate e. Since e is the rate at which // we'd // see a miscalled c, the expected mismatch rate is really e. So the expected number of // mismatches // is just sum_i e_i for i from 1..n for n sites // // Now, what's the probabilistic sum of mismatches? Suppose that the base b is equal to c. // Well, it could // actually be a miscall in a matching direction, which would happen at a e / 3 rate. If b != // c, then // the chance that it is actually a mismatch is 1 - e, since any of the other 3 options would be // a mismatch. // so the probability-weighted mismatch rate is sum_i ( matched ? e_i / 3 : 1 - e_i ) for i = 1 // ... n final byte[] haplotypeBases = haplotype.getBases(); final GATKSAMRecord read = p.getRead(); byte[] readBases = read.getReadBases(); readBases = AlignmentUtils.readToAlignmentByteArray( p.getRead().getCigar(), readBases); // Adjust the read bases based on the Cigar string byte[] readQuals = read.getBaseQualities(); readQuals = AlignmentUtils.readToAlignmentByteArray( p.getRead().getCigar(), readQuals); // Shift the location of the qual scores based on the Cigar string int readOffsetFromPileup = p.getOffset(); readOffsetFromPileup = AlignmentUtils.calcAlignmentByteArrayOffset( p.getRead().getCigar(), p, read.getAlignmentStart(), locus); final int baseOffsetStart = readOffsetFromPileup - (contextSize - 1) / 2; for (int i = 0; i < contextSize; i++) { final int baseOffset = i + baseOffsetStart; if (baseOffset < 0) { continue; } if (baseOffset >= readBases.length) { break; } final byte haplotypeBase = haplotypeBases[i]; final byte readBase = readBases[baseOffset]; final boolean matched = (readBase == haplotypeBase || haplotypeBase == (byte) REGEXP_WILDCARD); byte qual = readQuals[baseOffset]; if (qual == PileupElement.DELETION_BASE) { qual = PileupElement.DELETION_QUAL; } // calcAlignmentByteArrayOffset fills the readQuals array with DELETION_BASE at deletions qual = (byte) Math.min((int) qual, p.getMappingQual()); if (((int) qual) >= 5) { // quals less than 5 are used as codes and don't have actual probabilistic meaning // behind them final double e = QualityUtils.qualToErrorProb(qual); expected += e; mismatches += matched ? e : 1.0 - e / 3.0; } // a more sophisticated calculation would include the reference quality, but it's nice to // actually penalize // the mismatching of poorly determined regions of the consensus } return mismatches - expected; }