/** * Algorithm of Tarjan for computing the strongly connected components of a graph. * * @param v current node * @throws QueryException if a variable directly calls itself */ private void tarjan(final int v) throws QueryException { final int ixv = 2 * v, llv = ixv + 1, idx = next++; while (list.size() <= llv) list.add(-1); list.set(ixv, idx); list.set(llv, idx); stack.push(v); for (final int w : adjacentTo(v)) { final int ixw = 2 * w, llw = ixw + 1; if (list.size() <= ixw || list.get(ixw) < 0) { // Successor w has not yet been visited; recurse on it tarjan(w); list.set(llv, Math.min(list.get(llv), list.get(llw))); } else if (stack.contains(w)) { // Successor w is in stack S and hence in the current SCC list.set(llv, Math.min(list.get(llv), list.get(ixw))); } } // If v is a root node, pop the stack and generate an SCC if (list.get(llv) == list.get(ixv)) { int w; Scope[] out = null; do { w = stack.pop(); final Scope scp = scopes.get(w); out = out == null ? new Scope[] {scp} : Array.add(out, scp); } while (w != v); result.add(out); } }
/** * Formats the specified number and returns a string representation. * * @param item item * @param pics pictures * @param ii input info * @return picture variables * @throws QueryException query exception */ private byte[] format(final ANum item, final Picture[] pics, final InputInfo ii) throws QueryException { // Rule 1: return results for NaN final double d = item.dbl(ii); if (Double.isNaN(d)) return nan; // Rule 2: check if value if negative (smaller than zero or -0) final boolean neg = d < 0 || d == 0 && Double.doubleToLongBits(d) == Long.MIN_VALUE; final Picture pic = pics[neg && pics.length == 2 ? 1 : 0]; final IntList res = new IntList(), intgr = new IntList(), fract = new IntList(); int exp = 0; // Rule 3: percent/permille ANum num = item; if (pic.pc) num = (ANum) Calc.MULT.ev(num, Int.get(100), ii); if (pic.pm) num = (ANum) Calc.MULT.ev(num, Int.get(1000), ii); if (Double.isInfinite(num.dbl(ii))) { // Rule 4: infinity intgr.add(new TokenParser(inf).toArray()); } else { // Rule 5: exponent if (pic.minExp != 0 && d != 0) { BigDecimal dec = num.dec(ii).abs().stripTrailingZeros(); int scl = 0; if (dec.compareTo(BigDecimal.ONE) >= 0) { scl = dec.setScale(0, RoundingMode.HALF_DOWN).precision(); } else { while (dec.compareTo(BigDecimal.ONE) < 0) { dec = dec.multiply(BigDecimal.TEN); scl--; } scl++; } exp = scl - pic.min[0]; if (exp != 0) { final BigDecimal n = BigDecimal.TEN.pow(Math.abs(exp)); num = (ANum) Calc.MULT.ev(num, Dec.get(exp > 0 ? BigDecimal.ONE.divide(n) : n), ii); } } num = num.round(pic.maxFrac, true).abs(); // convert positive number to string final String s = (num instanceof Dbl || num instanceof Flt ? Dec.get(BigDecimal.valueOf(num.dbl(ii))) : num) .toString(); // integer/fractional separator final int sep = s.indexOf('.'); // create integer part final int sl = s.length(); final int il = sep == -1 ? sl : sep; for (int i = il; i < pic.min[0]; ++i) intgr.add(zero); // fractional number: skip leading 0 if (!s.startsWith("0.") || pic.min[0] > 0) { for (int i = 0; i < il; i++) intgr.add(zero + s.charAt(i) - '0'); } // squeeze in grouping separators if (pic.group[0].length == 1 && pic.group[0][0] > 0) { // regular pattern with repeating separators for (int p = intgr.size() - (neg ? 2 : 1); p > 0; --p) { if (p % pic.group[0][0] == 0) intgr.insert(intgr.size() - p, grouping); } } else { // irregular pattern, or no separators at all final int gl = pic.group[0].length; for (int g = 0; g < gl; ++g) { final int pos = intgr.size() - pic.group[0][g]; if (pos > 0) intgr.insert(pos, grouping); } } // create fractional part final int fl = sep == -1 ? 0 : sl - il - 1; if (fl != 0) for (int i = sep + 1; i < sl; i++) fract.add(zero + s.charAt(i) - '0'); for (int i = fl; i < pic.min[1]; ++i) fract.add(zero); // squeeze in grouping separators in a reverse manner final int ul = fract.size(); for (int p = pic.group[1].length - 1; p >= 0; p--) { final int pos = pic.group[1][p]; if (pos < ul) fract.insert(pos, grouping); } } // add minus sign if (neg && pics.length != 2) res.add(minus); // add prefix and integer part res.add(pic.prefSuf[0].toArray()).add(intgr.finish()); // add fractional part if (!fract.isEmpty()) res.add(decimal).add(fract.finish()); // add exponent if (pic.minExp != 0) { res.add(exponent); if (exp < 0) res.add(minus); final String s = Integer.toString(Math.abs(exp)); final int sl = s.length(); for (int i = sl; i < pic.minExp; i++) res.add(zero); for (int i = 0; i < sl; i++) res.add(zero + s.charAt(i) - '0'); } // add suffix res.add(pic.prefSuf[1].toArray()); return new TokenBuilder(res.finish()).finish(); }