public static Map<String, Object> convertEdgeProperty(EdgeProperty edge) { Map<String, Object> jsonDescriptor = new HashMap<String, Object>(); jsonDescriptor.put(DATA_MOVEMENT_TYPE_KEY, edge.getDataMovementType().name()); jsonDescriptor.put(DATA_SOURCE_TYPE_KEY, edge.getDataSourceType().name()); jsonDescriptor.put(SCHEDULING_TYPE_KEY, edge.getSchedulingType().name()); jsonDescriptor.put(EDGE_SOURCE_CLASS_KEY, edge.getEdgeSource().getClassName()); jsonDescriptor.put(EDGE_DESTINATION_CLASS_KEY, edge.getEdgeDestination().getClassName()); String history = edge.getEdgeSource().getHistoryText(); if (history != null) { jsonDescriptor.put(OUTPUT_USER_PAYLOAD_AS_TEXT, history); } history = edge.getEdgeDestination().getHistoryText(); if (history != null) { jsonDescriptor.put(INPUT_USER_PAYLOAD_AS_TEXT, history); } EdgeManagerPluginDescriptor descriptor = edge.getEdgeManagerDescriptor(); if (descriptor != null) { jsonDescriptor.put(EDGE_MANAGER_CLASS_KEY, descriptor.getClassName()); if (descriptor.getHistoryText() != null && !descriptor.getHistoryText().isEmpty()) { jsonDescriptor.put(USER_PAYLOAD_AS_TEXT, descriptor.getHistoryText()); } } return jsonDescriptor; }
public InputSpec getDestinationSpec(int destinationTaskIndex) { return new InputSpec( sourceVertex.getName(), edgeProperty.getEdgeDestination(), edgeManager.getNumDestinationTaskInputs( sourceVertex.getTotalTasks(), destinationTaskIndex)); }
/** * Compute optimal parallelism needed for the job * * @return true (if parallelism is determined), false otherwise */ @VisibleForTesting boolean determineParallelismAndApply() { if (numBipartiteSourceTasksCompleted == 0) { return true; } if (numVertexManagerEventsReceived == 0) { return true; } int currentParallelism = pendingTasks.size(); /** * When overall completed output size is not even equal to desiredTaskInputSize, we can wait for * some more data to be available to determine better parallelism until max.fraction is reached. * min.fraction is just a hint to the framework and need not be honored strictly in this case. */ boolean canDetermineParallelismLater = (completedSourceTasksOutputSize < desiredTaskInputDataSize) && (numBipartiteSourceTasksCompleted < (totalNumBipartiteSourceTasks * slowStartMaxSrcCompletionFraction)); if (canDetermineParallelismLater) { LOG.info( "Defer scheduling tasks; vertex=" + getContext().getVertexName() + ", totalNumBipartiteSourceTasks=" + totalNumBipartiteSourceTasks + ", completedSourceTasksOutputSize=" + completedSourceTasksOutputSize + ", numVertexManagerEventsReceived=" + numVertexManagerEventsReceived + ", numBipartiteSourceTasksCompleted=" + numBipartiteSourceTasksCompleted + ", maxThreshold=" + (totalNumBipartiteSourceTasks * slowStartMaxSrcCompletionFraction)); return false; } long expectedTotalSourceTasksOutputSize = (totalNumBipartiteSourceTasks * completedSourceTasksOutputSize) / numVertexManagerEventsReceived; int desiredTaskParallelism = (int) ((expectedTotalSourceTasksOutputSize + desiredTaskInputDataSize - 1) / desiredTaskInputDataSize); if (desiredTaskParallelism < minTaskParallelism) { desiredTaskParallelism = minTaskParallelism; } if (desiredTaskParallelism >= currentParallelism) { return true; } // most shufflers will be assigned this range basePartitionRange = currentParallelism / desiredTaskParallelism; if (basePartitionRange <= 1) { // nothing to do if range is equal 1 partition. shuffler does it by default return true; } int numShufflersWithBaseRange = currentParallelism / basePartitionRange; remainderRangeForLastShuffler = currentParallelism % basePartitionRange; int finalTaskParallelism = (remainderRangeForLastShuffler > 0) ? (numShufflersWithBaseRange + 1) : (numShufflersWithBaseRange); LOG.info( "Reduce auto parallelism for vertex: " + getContext().getVertexName() + " to " + finalTaskParallelism + " from " + pendingTasks.size() + " . Expected output: " + expectedTotalSourceTasksOutputSize + " based on actual output: " + completedSourceTasksOutputSize + " from " + numVertexManagerEventsReceived + " vertex manager events. " + " desiredTaskInputSize: " + desiredTaskInputDataSize + " max slow start tasks:" + (totalNumBipartiteSourceTasks * slowStartMaxSrcCompletionFraction) + " num sources completed:" + numBipartiteSourceTasksCompleted); if (finalTaskParallelism < currentParallelism) { // final parallelism is less than actual parallelism Map<String, EdgeProperty> edgeProperties = new HashMap<String, EdgeProperty>(bipartiteSources); Iterable<Map.Entry<String, SourceVertexInfo>> bipartiteItr = getBipartiteInfo(); for (Map.Entry<String, SourceVertexInfo> entry : bipartiteItr) { String vertex = entry.getKey(); EdgeProperty oldEdgeProp = entry.getValue().edgeProperty; // use currentParallelism for numSourceTasks to maintain original state // for the source tasks CustomShuffleEdgeManagerConfig edgeManagerConfig = new CustomShuffleEdgeManagerConfig( currentParallelism, finalTaskParallelism, basePartitionRange, ((remainderRangeForLastShuffler > 0) ? remainderRangeForLastShuffler : basePartitionRange)); EdgeManagerPluginDescriptor edgeManagerDescriptor = EdgeManagerPluginDescriptor.create(CustomShuffleEdgeManager.class.getName()); edgeManagerDescriptor.setUserPayload(edgeManagerConfig.toUserPayload()); EdgeProperty newEdgeProp = EdgeProperty.create( edgeManagerDescriptor, oldEdgeProp.getDataSourceType(), oldEdgeProp.getSchedulingType(), oldEdgeProp.getEdgeSource(), oldEdgeProp.getEdgeDestination()); edgeProperties.put(vertex, newEdgeProp); } getContext().reconfigureVertex(finalTaskParallelism, null, edgeProperties); updatePendingTasks(); configureTargetMapping(finalTaskParallelism); } return true; }