@Test public void testExtractorMapperCSV() throws Exception { FeatureExtractorMapper mapper = new FeatureExtractorMapper(); Configuration conf = getConfiguration(); conf.set("vector.implementation.class.name", "org.apache.mahout.math.RandomAccessSparseVector"); conf.set(FeatureExtractorKeySet.FEATURE_NAMES, RAW_CSV[0]); conf.set(FeatureExtractorKeySet.SELECTED_DEPENDENT, DEPENDENT); conf.set(FeatureExtractorKeySet.SELECTED_INDEPENDENT, INDEPENDENT); conf.set(FeatureExtractorKeySet.SELECTED_INTERACTION, INTERACTION); conf.set(FeatureExtractorKeySet.SEPARATOR, SEP_CSV); DummyRecordWriter<Text, VectorWritable> writer = new DummyRecordWriter<Text, VectorWritable>(); Mapper<LongWritable, Text, Text, VectorWritable>.Context context = DummyRecordWriter.build(mapper, conf, writer); mapper.setup(context); for (int i = 0; i < RAW_CSV.length; ++i) { mapper.map(new LongWritable(i), new Text(RAW_CSV[i]), context); } assertEquals("Number of map results", 1, writer.getData().size()); assertEquals("Number of map results", 1, writer.getData().size()); for (int i = 0; i < writer.getValue(new Text("5")).size(); ++i) { assertEquals( "Features: ", getFormatedOutput(writer.getValue(new Text("5")).get(i)), getFormatedOutput(RAW_DATA[i])); } }
@Test public void testAffinityMatrixInputMapper() throws Exception { AffinityMatrixInputMapper mapper = new AffinityMatrixInputMapper(); Configuration conf = getConfiguration(); conf.setInt(Keys.AFFINITY_DIMENSIONS, RAW_DIMENSIONS); // set up the dummy writer and the M/R context DummyRecordWriter<IntWritable, MatrixEntryWritable> writer = new DummyRecordWriter<>(); Mapper<LongWritable, Text, IntWritable, MatrixEntryWritable>.Context context = DummyRecordWriter.build(mapper, conf, writer); // loop through all the points and test each one is converted // successfully to a DistributedRowMatrix.MatrixEntry for (String s : RAW) { mapper.map(new LongWritable(), new Text(s), context); } // test the data was successfully constructed assertEquals("Number of map results", RAW_DIMENSIONS, writer.getData().size()); Set<IntWritable> keys = writer.getData().keySet(); for (IntWritable i : keys) { List<MatrixEntryWritable> row = writer.getData().get(i); assertEquals("Number of items in row", RAW_DIMENSIONS, row.size()); } }
@Test public void testAffinitymatrixInputReducer() throws Exception { AffinityMatrixInputMapper mapper = new AffinityMatrixInputMapper(); Configuration conf = getConfiguration(); conf.setInt(Keys.AFFINITY_DIMENSIONS, RAW_DIMENSIONS); // set up the dummy writer and the M/R context DummyRecordWriter<IntWritable, MatrixEntryWritable> mapWriter = new DummyRecordWriter<>(); Mapper<LongWritable, Text, IntWritable, MatrixEntryWritable>.Context mapContext = DummyRecordWriter.build(mapper, conf, mapWriter); // loop through all the points and test each one is converted // successfully to a DistributedRowMatrix.MatrixEntry for (String s : RAW) { mapper.map(new LongWritable(), new Text(s), mapContext); } // store the data for checking later Map<IntWritable, List<MatrixEntryWritable>> map = mapWriter.getData(); // now reduce the data AffinityMatrixInputReducer reducer = new AffinityMatrixInputReducer(); DummyRecordWriter<IntWritable, VectorWritable> redWriter = new DummyRecordWriter<>(); Reducer<IntWritable, MatrixEntryWritable, IntWritable, VectorWritable>.Context redContext = DummyRecordWriter.build( reducer, conf, redWriter, IntWritable.class, MatrixEntryWritable.class); for (IntWritable key : mapWriter.getKeys()) { reducer.reduce(key, mapWriter.getValue(key), redContext); } // check that all the elements are correctly ordered assertEquals("Number of reduce results", RAW_DIMENSIONS, redWriter.getData().size()); for (IntWritable row : redWriter.getKeys()) { List<VectorWritable> list = redWriter.getValue(row); assertEquals("Should only be one vector", 1, list.size()); // check that the elements in the array are correctly ordered Vector v = list.get(0).get(); for (Vector.Element e : v.all()) { // find this value in the original map MatrixEntryWritable toCompare = new MatrixEntryWritable(); toCompare.setRow(-1); toCompare.setCol(e.index()); toCompare.setVal(e.get()); assertTrue("This entry was correctly placed in its row", map.get(row).contains(toCompare)); } } }
@Test public void testMatrixDiagonalizeReducer() throws Exception { MatrixDiagonalizeMapper mapper = new MatrixDiagonalizeMapper(); Configuration conf = getConfiguration(); conf.setInt(Keys.AFFINITY_DIMENSIONS, RAW_DIMENSIONS); // set up the dummy writers DummyRecordWriter<NullWritable, IntDoublePairWritable> mapWriter = new DummyRecordWriter<>(); Mapper<IntWritable, VectorWritable, NullWritable, IntDoublePairWritable>.Context mapContext = DummyRecordWriter.build(mapper, conf, mapWriter); // perform the mapping for (int i = 0; i < RAW_DIMENSIONS; i++) { RandomAccessSparseVector toAdd = new RandomAccessSparseVector(RAW_DIMENSIONS); toAdd.assign(RAW[i]); mapper.map(new IntWritable(i), new VectorWritable(toAdd), mapContext); } // now perform the reduction MatrixDiagonalizeReducer reducer = new MatrixDiagonalizeReducer(); DummyRecordWriter<NullWritable, VectorWritable> redWriter = new DummyRecordWriter<>(); Reducer<NullWritable, IntDoublePairWritable, NullWritable, VectorWritable>.Context redContext = DummyRecordWriter.build( reducer, conf, redWriter, NullWritable.class, IntDoublePairWritable.class); // only need one reduction reducer.reduce(NullWritable.get(), mapWriter.getValue(NullWritable.get()), redContext); // first, make sure there's only one result List<VectorWritable> list = redWriter.getValue(NullWritable.get()); assertEquals("Only a single resulting vector", 1, list.size()); Vector v = list.get(0).get(); for (int i = 0; i < v.size(); i++) { assertEquals("Element sum is correct", rowSum(RAW[i]), v.get(i), 0.01); } }
/** * Testing the mapper is fairly straightforward: there are two matrices to be processed * simultaneously (cut matrix of sensitivities, and the affinity matrix), and since both are * symmetric, two entries from each will be grouped together with the same key (or, in the case of * an entry along the diagonal, only two entries). * * <p>The correct grouping of these quad or pair vertices is the only output of the mapper. * * @throws Exception */ @Test public void testEigencutsAffinityCutsMapper() throws Exception { EigencutsAffinityCutsMapper mapper = new EigencutsAffinityCutsMapper(); Configuration conf = new Configuration(); conf.setInt(EigencutsKeys.AFFINITY_DIMENSIONS, this.affinity.length); // set up the writer DummyRecordWriter<Text, VertexWritable> writer = new DummyRecordWriter<Text, VertexWritable>(); Mapper<IntWritable, VectorWritable, Text, VertexWritable>.Context context = DummyRecordWriter.build(mapper, conf, writer); // perform the maps for (int i = 0; i < this.affinity.length; i++) { VectorWritable aff = new VectorWritable(new DenseVector(this.affinity[i])); VectorWritable sens = new VectorWritable(new DenseVector(this.sensitivity[i])); IntWritable key = new IntWritable(i); mapper.map(key, aff, context); mapper.map(key, sens, context); } // were the vertices constructed correctly? if so, then for two 4x4 // matrices, there should be 10 unique keys with 56 total entries assertEquals("Number of keys", 10, writer.getKeys().size()); for (int i = 0; i < this.affinity.length; i++) { for (int j = 0; j < this.affinity.length; j++) { Text key = new Text(Math.max(i, j) + "_" + Math.min(i, j)); List<VertexWritable> values = writer.getValue(key); // if we're on a diagonal, there should only be 2 entries // otherwise, there should be 4 if (i == j) { assertEquals("Diagonal entry", 2, values.size()); for (VertexWritable v : values) { assertFalse("Diagonal values are zero", v.getValue() > 0); } } else { assertEquals("Off-diagonal entry", 4, values.size()); if (i + j == 3) { // all have values greater than 0 for (VertexWritable v : values) { assertTrue("Off-diagonal non-zero entries", v.getValue() > 0); } } } } } }
@Test public void testMatrixDiagonalizeMapper() throws Exception { MatrixDiagonalizeMapper mapper = new MatrixDiagonalizeMapper(); Configuration conf = getConfiguration(); conf.setInt(Keys.AFFINITY_DIMENSIONS, RAW_DIMENSIONS); // set up the dummy writers DummyRecordWriter<NullWritable, IntDoublePairWritable> writer = new DummyRecordWriter<>(); Mapper<IntWritable, VectorWritable, NullWritable, IntDoublePairWritable>.Context context = DummyRecordWriter.build(mapper, conf, writer); // perform the mapping for (int i = 0; i < RAW_DIMENSIONS; i++) { RandomAccessSparseVector toAdd = new RandomAccessSparseVector(RAW_DIMENSIONS); toAdd.assign(RAW[i]); mapper.map(new IntWritable(i), new VectorWritable(toAdd), context); } // check the number of the results assertEquals( "Number of map results", RAW_DIMENSIONS, writer.getValue(NullWritable.get()).size()); }
/** * Fairly straightforward: the task here is to reassemble the rows of the affinity matrix. The * tricky part is that any specific element in the list of elements which does NOT lay on the * diagonal will be so because it did not drop below the sensitivity threshold, hence it was not * "cut". * * <p>On the flip side, there will be many entries whose coordinate is now set to the diagonal, * indicating they were previously affinity entries whose sensitivities were below the threshold, * and hence were "cut" - set to 0 at their original coordinates, and had their values added to * the diagonal entry (hence the numerous entries with the coordinate of the diagonal). * * @throws Exception */ @Test public void testEigencutsAffinityCutsReducer() throws Exception { Configuration conf = new Configuration(); Path affinity = new Path("affinity"); Path sensitivity = new Path("sensitivity"); conf.set(EigencutsKeys.AFFINITY_PATH, affinity.getName()); conf.setInt(EigencutsKeys.AFFINITY_DIMENSIONS, this.affinity.length); // since we need the working paths to distinguish the vertex types, // we can't use the mapper (since we have no way of manually setting // the Context.workingPath() ) Map<Text, List<VertexWritable>> data = buildMapData(affinity, sensitivity, this.sensitivity); // now, set up the combiner EigencutsAffinityCutsCombiner combiner = new EigencutsAffinityCutsCombiner(); DummyRecordWriter<Text, VertexWritable> comWriter = new DummyRecordWriter<Text, VertexWritable>(); Reducer<Text, VertexWritable, Text, VertexWritable>.Context comContext = DummyRecordWriter.build(combiner, conf, comWriter, Text.class, VertexWritable.class); // perform the combining for (Map.Entry<Text, List<VertexWritable>> entry : data.entrySet()) { combiner.reduce(entry.getKey(), entry.getValue(), comContext); } // finally, set up the reduction writers EigencutsAffinityCutsReducer reducer = new EigencutsAffinityCutsReducer(); DummyRecordWriter<IntWritable, VectorWritable> redWriter = new DummyRecordWriter<IntWritable, VectorWritable>(); Reducer<Text, VertexWritable, IntWritable, VectorWritable>.Context redContext = DummyRecordWriter.build(reducer, conf, redWriter, Text.class, VertexWritable.class); // perform the reduction for (Text key : comWriter.getKeys()) { reducer.reduce(key, comWriter.getValue(key), redContext); } // now, check that the affinity matrix is correctly formed for (IntWritable row : redWriter.getKeys()) { List<VectorWritable> results = redWriter.getValue(row); // there should only be 1 vector assertEquals("Only one vector with a given row number", 1, results.size()); Vector therow = results.get(0).get(); for (Vector.Element e : therow.all()) { // check the diagonal if (row.get() == e.index()) { assertEquals( "Correct diagonal sum of cuts", sumOfRowCuts(row.get(), this.sensitivity), e.get(), EPSILON); } else { // not on the diagonal...if it was an element labeled to be cut, // it should have a value of 0. Otherwise, it should have kept its // previous value if (this.sensitivity[row.get()][e.index()] == 0.0) { // should be what it was originally assertEquals( "Preserved element", this.affinity[row.get()][e.index()], e.get(), EPSILON); } else { // should be 0 assertEquals("Cut element", 0.0, e.get(), EPSILON); } } } } }
/** * This is by far the trickiest step. However, an easy condition is if we have only two vertices - * indicating vertices on the diagonal of the two matrices - then we simply exit (since the * algorithm does not operate on the diagonal; it makes no sense to perform cuts by isolating data * points from themselves). * * <p>If there are four points, then first we must separate the two which belong to the affinity * matrix from the two that are sensitivities. In theory, each pair should have exactly the same * value (symmetry). If the sensitivity is below a certain threshold, then we set the two values * of the affinity matrix to 0 (but not before adding the affinity values to the diagonal, so as * to maintain the overall sum of the row of the affinity matrix). * * @throws Exception */ @Test public void testEigencutsAffinityCutsCombiner() throws Exception { Configuration conf = new Configuration(); Path affinity = new Path("affinity"); Path sensitivity = new Path("sensitivity"); conf.set(EigencutsKeys.AFFINITY_PATH, affinity.getName()); conf.setInt(EigencutsKeys.AFFINITY_DIMENSIONS, this.affinity.length); // since we need the working paths to distinguish the vertex types, // we can't use the mapper (since we have no way of manually setting // the Context.workingPath() ) Map<Text, List<VertexWritable>> data = buildMapData(affinity, sensitivity, this.sensitivity); // now, set up the combiner EigencutsAffinityCutsCombiner combiner = new EigencutsAffinityCutsCombiner(); DummyRecordWriter<Text, VertexWritable> redWriter = new DummyRecordWriter<Text, VertexWritable>(); Reducer<Text, VertexWritable, Text, VertexWritable>.Context redContext = DummyRecordWriter.build(combiner, conf, redWriter, Text.class, VertexWritable.class); // perform the combining for (Map.Entry<Text, List<VertexWritable>> entry : data.entrySet()) { combiner.reduce(entry.getKey(), entry.getValue(), redContext); } // test the number of cuts, there should be 2 assertEquals( "Number of cuts detected", 4, redContext.getCounter(EigencutsAffinityCutsJob.CUTSCOUNTER.NUM_CUTS).getValue()); // loop through all the results; let's see if they match up to our // affinity matrix (and all the cuts appear where they should Map<Text, List<VertexWritable>> results = redWriter.getData(); for (Map.Entry<Text, List<VertexWritable>> entry : results.entrySet()) { List<VertexWritable> row = entry.getValue(); IntWritable key = new IntWritable(Integer.parseInt(entry.getKey().toString())); double calcDiag = 0.0; double trueDiag = sumOfRowCuts(key.get(), this.sensitivity); for (VertexWritable e : row) { // should the value have been cut, e.g. set to 0? if (key.get() == e.getCol()) { // we have our diagonal calcDiag += e.getValue(); } else if (this.sensitivity[key.get()][e.getCol()] == 0.0) { // no, corresponding affinity should have same value as before assertEquals( "Preserved affinity value", this.affinity[key.get()][e.getCol()], e.getValue(), EPSILON); } else { // yes, corresponding affinity value should be 0 assertEquals("Cut affinity value", 0.0, e.getValue(), EPSILON); } } // check the diagonal has the correct sum assertEquals("Diagonal sum from cuts", trueDiag, calcDiag, EPSILON); } }