public void seek(TermEnum terms) throws IOException { original.seek(terms); docFreq = terms.docFreq(); pointer = -1; if (docFreq > postingMaps.length) { // grow postingsMap PostingMap[] newMap = new PostingMap[docFreq]; System.arraycopy(postingMaps, 0, newMap, 0, postingMaps.length); for (int i = postingMaps.length; i < docFreq; i++) { newMap[i] = new PostingMap(); } postingMaps = newMap; } out.reset(); int i = 0; while (original.next()) { PostingMap map = postingMaps[i++]; map.newDoc = oldToNew[original.doc()]; // remap the newDoc id map.offset = out.getFilePointer(); // save pointer to buffer final int tf = original.freq(); // buffer tf & positions out.writeVInt(tf); int prevPosition = 0; for (int j = tf; j > 0; j--) { // delta encode positions int p = original.nextPosition(); out.writeVInt(p - prevPosition); prevPosition = p; } } out.flush(); docFreq = i; // allow for deletions Arrays.sort(postingMaps, 0, docFreq); // resort by mapped doc ids // HeapSorter.sort(postingMaps,docFreq); // TODO MC - due to the lack of space // NOTE: this might be substantially faster if RAMInputStream were public // and supported a reset() operation. in = tempDir.openInput(TEMP_FILE); }
public static void main(String[] args) throws Exception { // the IndexReader object is the main handle that will give you // all the documents, terms and inverted index IndexReader r = IndexReader.open(FSDirectory.open(new File("index"))); // You can figure out the number of documents using the maxDoc() function System.out.println("The number of documents in this index is: " + r.maxDoc()); int i = 0; // You can find out all the terms that have been indexed using the terms() function TermEnum t = r.terms(); while (t.next()) { // Since there are so many terms, let us try printing only term #100000-#100010 if (i > 100000) System.out.println("[" + i + "] " + t.term().text()); if (++i > 100010) break; } // You can create your own query terms by calling the Term constructor, with the field // 'contents' // In the following example, the query term is 'brute' Term te = new Term("contents", "brute"); // You can also quickly find out the number of documents that have term t System.out.println("Number of documents with the word 'brute' is: " + r.docFreq(te)); // You can use the inverted index to find out all the documents that contain the term 'brute' // by using the termDocs function TermDocs td = r.termDocs(te); while (td.next()) { System.out.println( "Document number [" + td.doc() + "] contains the term 'brute' " + td.freq() + " time(s)."); } // You can find the URL of the a specific document number using the document() function // For example, the URL for document number 14191 is: Document d = r.document(14191); String url = d.getFieldable("path") .stringValue(); // the 'path' field of the Document object holds the URL System.out.println(url.replace("%%", "/")); // -------- Now let us use all of the functions above to make something useful -------- // The following bit of code is a worked out example of how to get a bunch of documents // in response to a query and show them (without ranking them according to TF/IDF) Scanner sc = new Scanner(System.in); String str = ""; System.out.print("query> "); while (!(str = sc.nextLine()).equals("quit")) { String[] terms = str.split("\\s+"); for (String word : terms) { Term term = new Term("contents", word); TermDocs tdocs = r.termDocs(term); while (tdocs.next()) { String d_url = r.document(tdocs.doc()).getFieldable("path").stringValue().replace("%%", "/"); System.out.println("[" + tdocs.doc() + "] " + d_url); } } System.out.print("query> "); } }