コード例 #1
0
  @Test
  public void testContinuous() {
    final double x0 = 0.0;
    final double x1 = 1.0;
    final double x2 = 2.0;
    final double x3 = 3.0;
    final double p12 = 0.5;
    final AbstractRealDistribution distribution;
    distribution =
        new AbstractRealDistribution(null) {
          private static final long serialVersionUID = 1L;

          @Override
          public double cumulativeProbability(final double x) {
            if ((x < x0) || (x > x3)) {
              throw new OutOfRangeException(x, x0, x3);
            }
            if (x <= x1) {
              return p12 * (x - x0) / (x1 - x0);
            } else if (x <= x2) {
              return p12;
            } else if (x <= x3) {
              return p12 + (1.0 - p12) * (x - x2) / (x3 - x2);
            }
            return 0.0;
          }

          @Override
          public double density(final double x) {
            if ((x < x0) || (x > x3)) {
              throw new OutOfRangeException(x, x0, x3);
            }
            if (x <= x1) {
              return p12 / (x1 - x0);
            } else if (x <= x2) {
              return 0.0;
            } else if (x <= x3) {
              return (1.0 - p12) / (x3 - x2);
            }
            return 0.0;
          }

          @Override
          public double getNumericalMean() {
            return ((x0 + x1) * p12 + (x2 + x3) * (1.0 - p12)) / 2.0;
          }

          @Override
          public double getNumericalVariance() {
            final double meanX = getNumericalMean();
            final double meanX2;
            meanX2 =
                ((x0 * x0 + x0 * x1 + x1 * x1) * p12 + (x2 * x2 + x2 * x3 + x3 * x3) * (1.0 - p12))
                    / 3.0;
            return meanX2 - meanX * meanX;
          }

          @Override
          public double getSupportLowerBound() {
            return x0;
          }

          @Override
          public double getSupportUpperBound() {
            return x3;
          }

          @Override
          public boolean isSupportConnected() {
            return false;
          }

          @Override
          public double probability(final double x) {
            throw new UnsupportedOperationException();
          }
        };
    final double expected = x1;
    final double actual = distribution.inverseCumulativeProbability(p12);
    Assert.assertEquals("", expected, actual, distribution.getSolverAbsoluteAccuracy());
  }
コード例 #2
0
  @Test
  public void testDiscontinuous() {
    final double x0 = 0.0;
    final double x1 = 0.25;
    final double x2 = 0.5;
    final double x3 = 0.75;
    final double x4 = 1.0;
    final double p12 = 1.0 / 3.0;
    final double p23 = 2.0 / 3.0;
    final AbstractRealDistribution distribution;
    distribution =
        new AbstractRealDistribution(null) {
          private static final long serialVersionUID = 1L;

          @Override
          public double cumulativeProbability(final double x) {
            if ((x < x0) || (x > x4)) {
              throw new OutOfRangeException(x, x0, x4);
            }
            if (x <= x1) {
              return p12 * (x - x0) / (x1 - x0);
            } else if (x <= x2) {
              return p12;
            } else if (x <= x3) {
              return p23;
            } else {
              return (1.0 - p23) * (x - x3) / (x4 - x3) + p23;
            }
          }

          @Override
          public double density(final double x) {
            if ((x < x0) || (x > x4)) {
              throw new OutOfRangeException(x, x0, x4);
            }
            if (x <= x1) {
              return p12 / (x1 - x0);
            } else if (x <= x2) {
              return 0.0;
            } else if (x <= x3) {
              return 0.0;
            } else {
              return (1.0 - p23) / (x4 - x3);
            }
          }

          @Override
          public double getNumericalMean() {
            final UnivariateFunction f =
                new UnivariateFunction() {

                  public double value(final double x) {
                    return x * density(x);
                  }
                };
            final UnivariateIntegrator integrator = new RombergIntegrator();
            return integrator.integrate(Integer.MAX_VALUE, f, x0, x4);
          }

          @Override
          public double getNumericalVariance() {
            final double meanX = getNumericalMean();
            final UnivariateFunction f =
                new UnivariateFunction() {

                  public double value(final double x) {
                    return x * x * density(x);
                  }
                };
            final UnivariateIntegrator integrator = new RombergIntegrator();
            final double meanX2 = integrator.integrate(Integer.MAX_VALUE, f, x0, x4);
            return meanX2 - meanX * meanX;
          }

          @Override
          public double getSupportLowerBound() {
            return x0;
          }

          @Override
          public double getSupportUpperBound() {
            return x4;
          }

          @Override
          public boolean isSupportConnected() {
            return false;
          }

          @Override
          public double probability(final double x) {
            throw new UnsupportedOperationException();
          }
        };
    final double expected = x2;
    final double actual = distribution.inverseCumulativeProbability(p23);
    Assert.assertEquals("", expected, actual, distribution.getSolverAbsoluteAccuracy());
  }