コード例 #1
0
 /**
  * Center the values around the median per column.
  *
  * @param result the input and output matrix where the first dimension are rows and the second
  *     columns.
  */
 private static void centerAroundColumnMedian(final double[][] result) {
   for (int i = 0; i < result[0].length; i++) {
     final DescriptiveStatistics stats = new DescriptiveStatistics();
     for (final double[] aResult : result) {
       stats.addValue(aResult[i]);
     }
     final double median = stats.getPercentile(50);
     for (int j = 0; j < result.length; j++) {
       result[j][i] -= median;
     }
   }
 }
コード例 #2
0
  protected void autoCorrelation() {
    DescriptiveStatistics descriptiveStatistics = new DescriptiveStatistics(simulations);
    double mean = descriptiveStatistics.getMean();
    double variance = descriptiveStatistics.getVariance();
    int numberOfAutocorrelations = simulations.length / 2;
    double[] autoCorrelations = new double[numberOfAutocorrelations];
    for (int i = 1; i <= numberOfAutocorrelations; ++i) {
      autoCorrelations[i - 1] = autoCovariance(i, mean) / variance;
    }

    plot("Auto Correlations", autoCorrelations);
  }
コード例 #3
0
ファイル: Results.java プロジェクト: DieGreco/GA
 /**
  * @param args
  * @throws IOException
  */
 public void results(String[] f) throws IOException {
   String[] indicators = {"EPSILON", "IGD", "SPREAD", "HV"};
   String[] operators = {"BLX", "SBX"
     // ,"DEX"
   };
   int runs = 15;
   double aux = 0;
   String str = "";
   BufferedReader br = null;
   Vector<PrintWriter> pw = new Vector<PrintWriter>();
   DescriptiveStatistics d = new DescriptiveStatistics();
   for (int i = 0; i < operators.length; i++) {
     for (int j = 0; j < indicators.length; j++) {
       pw.add(
           new PrintWriter(
               "C:\\Users\\9dgonzalezg\\Desktop\\workspace\\GA\\GA"
                   + "\\resultsMyNSGAIIExperiment\\data\\"
                   + new String(f[i])
                   + "_"
                   + indicators[j]
                   + ".res"));
       for (int k = 0; k < runs; k++) {
         br =
             new BufferedReader(
                 new FileReader(
                     "C:\\Users\\9dgonzalezg"
                         + "\\Desktop\\workspace\\GA\\GA\\resultsMyNSGAIIExperiment\\"
                         + "data\\"
                         + f[i]
                         + "\\"
                         + new Integer(k).toString()
                         + "\\"
                         + indicators[j]));
         str = br.readLine();
         while (str != null) {
           aux = Double.parseDouble(str);
           d.addValue(aux);
           str = br.readLine();
         }
         br.close();
         pw.get(j).println(d.getMean());
         d.clear();
       }
       pw.get(j).close();
     }
     pw.clear();
   }
 }
コード例 #4
0
  @Override
  public void execute() {

    double util = 0;
    double power = 0;
    double prevSlavWork;
    double prevWork;

    // store current work and SLA violated work values
    prevSlavWork = totalSlavWork;
    prevWork = totalWork;

    // reset total work values
    totalSlavWork = 0;
    totalWork = 0;

    totalPower = 0;

    for (Host host : dc.getHosts()) {

      // store host CPU utilization
      if (!hostUtil.containsKey(host)) {
        hostUtil.put(host, new DescriptiveStatistics());
      }

      hostUtil.get(host).addValue(host.getCpuManager().getCpuInUse());

      util += host.getCpuManager().getCpuInUse();

      // get VM SLA values
      for (VMAllocation vmAlloc : host.getVMAllocations()) {
        totalSlavWork += vmAlloc.getVm().getApplication().getTotalSLAViolatedWork();
        totalWork +=
            vmAlloc
                .getVm()
                .getApplication()
                .getTotalIncomingWork(); // NOTE: This ONLY works with SINGLE TIERED applications.
        // For multi-tiered applications, this will count incoming
        // work multiple times!!
      }

      // get power consumption
      power += host.getCurrentPowerConsumption();
      totalPower += host.getPowerConsumed();
    }

    dcUtil.addValue(util);

    dcPower.addValue(power);
    dcPowerEfficiency.addValue(util / power);
    double optimalPowerConsumption = calculateOptimalPowerConsumption(util);
    dcOptimalPower.addValue(optimalPowerConsumption);
    dcOptimalPowerEfficiency.addValue(util / optimalPowerConsumption);

    dcOptimalPowerRatio.addValue((util / optimalPowerConsumption) / (util / power));

    // records the total fraction of SLA violated incoming work since the last time interval
    dcSla.addValue((totalSlavWork - prevSlavWork) / (totalWork - prevWork));
  }
コード例 #5
0
 private double calcSTDev(
     HashMap<Integer, String> singleGeneCaseValueMap, String groupType, String profileStableId) {
   switch (groupType) {
     case "altered":
       DescriptiveStatistics stats_altered = new DescriptiveStatistics();
       for (Integer alteredSampleId : alteredSampleIds) {
         if (singleGeneCaseValueMap.containsKey(alteredSampleId)) {
           if (profileStableId.indexOf("rna_seq") != -1) {
             try {
               stats_altered.addValue(
                   Math.log(Double.parseDouble(singleGeneCaseValueMap.get(alteredSampleId)))
                       / Math.log(2));
             } catch (NumberFormatException e) {
               e.getStackTrace();
             }
           } else {
             try {
               stats_altered.addValue(
                   Double.parseDouble(singleGeneCaseValueMap.get(alteredSampleId)));
             } catch (NumberFormatException e) {
               e.getStackTrace();
             }
           }
         }
       }
       return stats_altered.getStandardDeviation();
     case "unaltered":
       DescriptiveStatistics stats_unaltered = new DescriptiveStatistics();
       for (Integer unalteredSampleId : unalteredSampleIds) {
         if (singleGeneCaseValueMap.containsKey(unalteredSampleId)) {
           if (profileStableId.indexOf("rna_seq") != -1) {
             try {
               stats_unaltered.addValue(
                   Math.log(Double.parseDouble(singleGeneCaseValueMap.get(unalteredSampleId)))
                       / Math.log(2));
             } catch (NumberFormatException e) {
               e.getStackTrace();
             }
           } else {
             try {
               stats_unaltered.addValue(
                   Double.parseDouble(singleGeneCaseValueMap.get(unalteredSampleId)));
             } catch (NumberFormatException e) {
               e.getStackTrace();
             }
           }
         }
       }
       return stats_unaltered.getStandardDeviation();
     default:
       return Double.NaN; // error
   }
 }
コード例 #6
0
  @Test
  public void testDataJsonConsumption() throws Exception {
    JsonArray ginzburg = createJson("ginzburg", 1, 10);
    assertEquals(ginzburg.size(), 1);

    BasicSampleExtractor extractor = new BasicSampleExtractor();
    JsonObject jsonObject = ginzburg.getJsonObject(0);

    Optional<SampleData> sampleData = extractor.extractSample(jsonObject);
    assertTrue(sampleData.isPresent());
    assertEquals(sampleData.get().getPublishId(), "ginzburg");
    assertFalse(sampleData.get().getTime().isEmpty());

    double[] readings = extractor.extractReadings(jsonObject.getString(READINGS));
    assertEquals(readings.length, 10);

    DescriptiveStatistics stats = new DescriptiveStatistics(readings);
    double median = stats.getPercentile(50);
    assertEquals(sampleData.get().getMedian(), median);
  }
コード例 #7
0
  /**
   * Normalize (standardize) the sample, so it is has a mean of 0 and a standard deviation of 1.
   *
   * @param sample Sample to normalize.
   * @return normalized (standardized) sample.
   * @since 2.2
   */
  public static double[] normalize(final double[] sample) {
    DescriptiveStatistics stats = new DescriptiveStatistics();

    // Add the data from the series to stats
    for (int i = 0; i < sample.length; i++) {
      stats.addValue(sample[i]);
    }

    // Compute mean and standard deviation
    double mean = stats.getMean();
    double standardDeviation = stats.getStandardDeviation();

    // initialize the standardizedSample, which has the same length as the sample
    double[] standardizedSample = new double[sample.length];

    for (int i = 0; i < sample.length; i++) {
      // z = (x- mean)/standardDeviation
      standardizedSample[i] = (sample[i] - mean) / standardDeviation;
    }
    return standardizedSample;
  }
コード例 #8
0
  public Vector<double[]> getMeanSd(svm_node[][] node) {
    // TODO Auto-generated method stub
    DescriptiveStatistics statistics = new DescriptiveStatistics();
    int nAttr = node[0].length;
    int nSample = node.length;
    double[] meanValues = new double[nAttr];
    double[] sdValues = new double[nAttr];

    for (int i = 0; i < nAttr; i++) {
      statistics.clear();
      for (int j = 0; j < nSample; j++) {
        statistics.addValue(node[j][i].value);
      }
      // 获取中值及标准差
      meanValues[i] = statistics.getMean();
      sdValues[i] = statistics.getStandardDeviation();
    }

    Vector<double[]> meanSd = new Vector<double[]>();
    meanSd.add(meanValues);
    meanSd.add(sdValues);
    return meanSd;
  }
コード例 #9
0
  /**
   * Construct a new DCUtilizationMonitor
   *
   * @param simulation
   * @param frequency The frequency in milliseconds to run this monitor
   * @param windowSize The number of historical values to use in calculations
   * @param dc
   */
  public DCUtilizationMonitor(
      Simulation simulation, long frequency, int windowSize, DataCentre dc) {
    super(simulation, frequency);
    this.windowSize = windowSize;
    this.dc = dc;

    dcUtil.setWindowSize(windowSize);
    dcSla.setWindowSize(windowSize);
    dcPower.setWindowSize(windowSize);
    dcOptimalPower.setWindowSize(windowSize);
    dcPowerEfficiency.setWindowSize(windowSize);
    dcOptimalPowerEfficiency.setWindowSize(windowSize);
    dcOptimalPowerRatio.setWindowSize(windowSize);

    // initialize host values
    for (Host host : dc.getHosts()) {
      hostUtil.put(host, new DescriptiveStatistics(windowSize));
    }
  }
コード例 #10
0
ファイル: StatisticsBuilder.java プロジェクト: kentoa/arx
  /**
   * Returns summary statistics for all attributes.
   *
   * @param listwiseDeletion A flag enabling list-wise deletion
   * @return
   */
  @SuppressWarnings({"unchecked", "rawtypes"})
  public <T> Map<String, StatisticsSummary<?>> getSummaryStatistics(boolean listwiseDeletion) {

    Map<String, DescriptiveStatistics> statistics = new HashMap<String, DescriptiveStatistics>();
    Map<String, StatisticsSummaryOrdinal> ordinal = new HashMap<String, StatisticsSummaryOrdinal>();
    Map<String, DataScale> scales = new HashMap<String, DataScale>();

    // Detect scales
    for (int col = 0; col < handle.getNumColumns(); col++) {

      // Meta
      String attribute = handle.getAttributeName(col);
      DataType<?> type = handle.getDataType(attribute);

      // Scale
      DataScale scale = type.getDescription().getScale();

      // Try to replace nominal scale with ordinal scale based on base data type
      if (scale == DataScale.NOMINAL && handle.getGeneralization(attribute) != 0) {
        if (!(handle.getBaseDataType(attribute) instanceof ARXString)
            && getHierarchy(col, true) != null) {
          scale = DataScale.ORDINAL;
        }
      }

      // Store
      scales.put(attribute, scale);
      statistics.put(attribute, new DescriptiveStatistics());
      ordinal.put(
          attribute,
          getSummaryStatisticsOrdinal(
              handle.getGeneralization(attribute),
              handle.getDataType(attribute),
              handle.getBaseDataType(attribute),
              getHierarchy(col, true)));
    }

    // Compute summary statistics
    for (int row = 0; row < handle.getNumRows(); row++) {

      // Check, if we should include this row
      boolean include = true;
      if (listwiseDeletion) {
        for (int col = 0; col < handle.getNumColumns(); col++) {
          if (handle.isSuppressed(row) || DataType.isNull(handle.getValue(row, col))) {
            include = false;
            break;
          }
        }
      }

      // Check
      checkInterrupt();

      // If yes, add
      if (include) {

        // For each column
        for (int col = 0; col < handle.getNumColumns(); col++) {

          // Meta
          String value = handle.getValue(row, col);
          String attribute = handle.getAttributeName(col);
          DataType<?> type = handle.getDataType(attribute);

          // Analyze
          if (!value.equals(handle.getSuppressionString()) && !DataType.isNull(value)) {
            ordinal.get(attribute).addValue(value);
            if (type instanceof DataTypeWithRatioScale) {
              statistics
                  .get(attribute)
                  .addValue(((DataTypeWithRatioScale) type).toDouble(type.parse(value)));
            }
          }
        }
      }
    }

    // Convert
    Map<String, StatisticsSummary<?>> result = new HashMap<String, StatisticsSummary<?>>();
    for (int col = 0; col < handle.getNumColumns(); col++) {

      // Check
      checkInterrupt();

      // Depending on scale
      String attribute = handle.getAttributeName(col);
      DataScale scale = scales.get(attribute);
      DataType<T> type = (DataType<T>) handle.getDataType(attribute);
      ordinal.get(attribute).analyze();
      if (scale == DataScale.NOMINAL) {
        StatisticsSummaryOrdinal stats = ordinal.get(attribute);
        result.put(
            attribute,
            new StatisticsSummary<T>(
                DataScale.NOMINAL,
                stats.getNumberOfMeasures(),
                stats.getMode(),
                type.parse(stats.getMode())));
      } else if (scale == DataScale.ORDINAL) {
        StatisticsSummaryOrdinal stats = ordinal.get(attribute);
        result.put(
            attribute,
            new StatisticsSummary<T>(
                DataScale.ORDINAL,
                stats.getNumberOfMeasures(),
                stats.getMode(),
                type.parse(stats.getMode()),
                stats.getMedian(),
                type.parse(stats.getMedian()),
                stats.getMin(),
                type.parse(stats.getMin()),
                stats.getMax(),
                type.parse(stats.getMax())));
      } else if (scale == DataScale.INTERVAL) {
        StatisticsSummaryOrdinal stats = ordinal.get(attribute);
        DescriptiveStatistics stats2 = statistics.get(attribute);
        boolean isPeriod = type.getDescription().getWrappedClass() == Date.class;

        // TODO: Something is wrong with commons math's kurtosis
        double kurtosis = stats2.getKurtosis();
        kurtosis = kurtosis < 0d ? Double.NaN : kurtosis;
        double range = stats2.getMax() - stats2.getMin();
        double stddev = Math.sqrt(stats2.getVariance());

        result.put(
            attribute,
            new StatisticsSummary<T>(
                DataScale.INTERVAL,
                stats.getNumberOfMeasures(),
                stats.getMode(),
                type.parse(stats.getMode()),
                stats.getMedian(),
                type.parse(stats.getMedian()),
                stats.getMin(),
                type.parse(stats.getMin()),
                stats.getMax(),
                type.parse(stats.getMax()),
                toString(type, stats2.getMean(), false, false),
                toValue(type, stats2.getMean()),
                stats2.getMean(),
                toString(type, stats2.getVariance(), isPeriod, true),
                toValue(type, stats2.getVariance()),
                stats2.getVariance(),
                toString(type, stats2.getPopulationVariance(), isPeriod, true),
                toValue(type, stats2.getPopulationVariance()),
                stats2.getPopulationVariance(),
                toString(type, stddev, isPeriod, false),
                toValue(type, stddev),
                stddev,
                toString(type, range, isPeriod, false),
                toValue(type, range),
                stats2.getMax() - stats2.getMin(),
                toString(type, kurtosis, isPeriod, false),
                toValue(type, kurtosis),
                kurtosis));
      } else if (scale == DataScale.RATIO) {
        StatisticsSummaryOrdinal stats = ordinal.get(attribute);
        DescriptiveStatistics stats2 = statistics.get(attribute);

        // TODO: Something is wrong with commons math's kurtosis
        double kurtosis = stats2.getKurtosis();
        kurtosis = kurtosis < 0d ? Double.NaN : kurtosis;
        double range = stats2.getMax() - stats2.getMin();
        double stddev = Math.sqrt(stats2.getVariance());

        result.put(
            attribute,
            new StatisticsSummary<T>(
                DataScale.RATIO,
                stats.getNumberOfMeasures(),
                stats.getMode(),
                type.parse(stats.getMode()),
                stats.getMedian(),
                type.parse(stats.getMedian()),
                stats.getMin(),
                type.parse(stats.getMin()),
                stats.getMax(),
                type.parse(stats.getMax()),
                toString(type, stats2.getMean(), false, false),
                toValue(type, stats2.getMean()),
                stats2.getMean(),
                toString(type, stats2.getVariance(), false, false),
                toValue(type, stats2.getVariance()),
                stats2.getVariance(),
                toString(type, stats2.getPopulationVariance(), false, false),
                toValue(type, stats2.getPopulationVariance()),
                stats2.getPopulationVariance(),
                toString(type, stddev, false, false),
                toValue(type, stddev),
                stddev,
                toString(type, range, false, false),
                toValue(type, range),
                range,
                toString(type, kurtosis, false, false),
                toValue(type, kurtosis),
                kurtosis,
                toString(type, stats2.getGeometricMean(), false, false),
                toValue(type, stats2.getGeometricMean()),
                stats2.getGeometricMean()));
      }
    }

    return result;
  }
コード例 #11
0
ファイル: KMeans.java プロジェクト: Keraunos/TP_KMeans
  public static void main(String[] args) {

    // TEST MEASURE
    //        Point p1 = new Point(-1d, -1d);
    //        Point p2 = new Point(2d, 3d);
    //        System.out.println(measure.d(p1, p2));
    //        System.out.println(measure.s(p1, p2));
    //        return;

    Double[][] data = FileHandler.readFile(fileName);

    // cannot display points if dimension is > 2
    if (data[0].length != 2) canDisplay = false;

    // build graphic points from coords' array
    buildPointsFromData(data);
    Config.computeBoundingRect(points);

    // init display
    if (canDisplay) {
      disp = new Display();
      disp.setVisible(true);
      for (Point p : points) {
        disp.addObject(p);
      }
    }

    testResults = new double[nbTests];

    for (int t = 0; t < nbTests; ++t) {

      // define K clusters and K temporary centres
      clusters = new ArrayList<Cluster>();
      for (int i = 0; i < K; ++i) {
        clusters.add(new Cluster());
      }
      setRandomCenters();
      for (Cluster c : clusters) {
        System.out.println("center for cluster " + c + ": " + c.getCenter());
      }

      if (canDisplay) pause(1000);

      // variables used in for loops
      double minDist, currDist, diff;
      Double[] prevCoords, newCoords;
      Cluster alloc;
      Point newCenter;

      for (int i = 0; i < maxIter; ++i) {

        if (canDisplay) {
          disp.setLabel("[ iteration #" + (i + 1) + " ]");
        } else {
          System.out.println("------> iteration #" + (i + 1));
        }

        // allocate points to group which center is closest
        for (Point p : points) {

          minDist = Config.MAX;
          alloc = clusters.get(0); // default initialization

          for (Cluster c : clusters) {
            currDist = measure.d(p, c.getCenter());
            if (currDist < minDist) {
              minDist = currDist;
              alloc = c;
            }
          }

          alloc.addPoint(p);
        }

        // recenter: calculate gravity centers for formed groups
        diff = 0;
        prevCoords = null;
        for (Cluster c : clusters) {

          // delete previous center if it not a Point of the Cluster
          if (canDisplay && !c.getPoints().contains(c.getCenter())) {
            disp.removeObject(c.getCenter());
          }

          if (stopOnConverge) {
            prevCoords = c.getCenter().getCoords();
          }

          newCenter = c.makeGravityCenter();

          if (stopOnConverge) {
            newCoords = c.getCenter().getCoords();
            for (int k = 0; k < prevCoords.length; ++k) {
              diff += Math.abs(prevCoords[k] - newCoords[k]);
            }
          }

          if (canDisplay) {
            disp.addObject(newCenter);
          } else {
            // System.out.println("\tcenter for " + c + ": " + c.getCenter());
            System.out.println(c.getCenter());
          }
        } // loop over clusters

        if (canDisplay) {
          disp.repaint();
        }

        // if Clusters' centers don't change anymore, then stop (algorithm converged)
        if (diff == 0 && stopOnConverge) {
          testResults[t] = (double) i;
          if (canDisplay) {
            disp.setLabel("[ Converged at iteration #" + (i) + " ]");
            disp.repaint();
          } else {
            System.out.println("[ Converged at iteration #" + (i) + " ]");
          }
          break;
        }

        pause(100);
      } // loop over iterations

      if (testResults[t] == 0) {
        System.out.println("!!!!!!!!!! Test #" + t + " did not converge.");
        if (stopOnConverge) return;
      }

      // reset display
      if (canDisplay && t + 1 < nbTests) {
        for (Point p : points) p.setCluster(null);
        for (Cluster c : clusters) disp.removeObject(c.getCenter());
      }
    } // loop over tests

    // display test results and compute means
    DescriptiveStatistics stats = new DescriptiveStatistics(testResults);
    System.out.println("=========> Results:");
    for (int t = 0; t < nbTests; ++t) {
      System.out.println("--> [ " + testResults[t] + " ]");
    }
    System.out.println("=========> Means: " + stats.getMean());
    System.out.println("=========> Std dev: " + stats.getStandardDeviation());
  }