public static IDataset interpolate(IDataset oldx, IDataset oldy, IDataset newx) { // TODO more sanity checks on inputs DoubleDataset dx = (DoubleDataset) DatasetUtils.cast(oldx, Dataset.FLOAT64); DoubleDataset dy = (DoubleDataset) DatasetUtils.cast(oldy, Dataset.FLOAT64); boolean sorted = true; double maxtest = oldx.getDouble(0); for (int i = 1; i < ((Dataset) oldx).count(); i++) { if (maxtest > oldx.getDouble(i)) { sorted = false; break; } maxtest = dx.getDouble(i); } double[] sortedx = null; double[] sortedy = null; if (!sorted) { IntegerDataset sIdx = getIndiciesOfSorted(dx); sortedx = new double[dx.getData().length]; sortedy = new double[dy.getData().length]; for (int i = 0; i < sIdx.getSize(); i++) { sortedx[i] = dx.getDouble(sIdx.get(i)); sortedy[i] = dy.getDouble(sIdx.get(i)); } } else { sortedx = dx.getData(); sortedy = dy.getData(); } SplineInterpolator si = new SplineInterpolator(); PolynomialSplineFunction poly = si.interpolate(sortedx, sortedy); IDataset newy = newx.clone(); newy.setName(oldy.getName() + "_interpolated"); for (int i = 0; i < ((Dataset) newx).count(); i++) { newy.set(poly.value(newx.getDouble(i)), i); } return newy; }
public Series fit() { SplineInterpolator ipo = new SplineInterpolator(); double[] x = new double[this.size()]; double[] y = new double[this.size()]; for (int n = 0; n < size(); ++n) { x[n] = (double) n; y[n] = get(n); } PolynomialSplineFunction psf = ipo.interpolate(x, y); Series ret = new Series(iId, iName); for (int n = 0; n < size(); ++n) ret.add(psf.value(Math.max(.0, n - 0.5))); return ret; }