/** {@inheritDoc } */ public DomainRegistry generateDomain(int fanin) { DomainRegistry domainRegistry = provider.generateDomain(fanin); String domainString = domainRegistry.getDomainString(); domainRegistry.setDomainString( domainString + "," + lambdaDomainPrototype.getDomainString() + "," + gammaDomainPrototype.getDomainString()); return domainRegistry; }
public AngleModulation() { precision = 3; bitsPerDimension = 0; domainRegistry = new StringBasedDomainRegistry(); domainRegistry.setDomainString("R(-1.0:1.0)^4"); }
/** * @TODO: This needs to use an API for domain string manipulation * * @param domain * @return */ public int getRequiredNumberOfBits(DomainRegistry domain) { if (domain.getDomainString().contains("B")) { return 1; } else { String range = domain.getDomainString(); // now remove all the irrelevant details from the domain provided range = range.substring(range.indexOf('(') + 1); range = range.substring(0, range.indexOf(')')); String[] bounds = range.split(":"); lowerBound = Double.valueOf(bounds[0]).doubleValue(); upperBound = Double.valueOf(bounds[1]).doubleValue(); double greaterRange = Math.abs(lowerBound) + Math.abs(upperBound); double expandedRange = greaterRange * Math.pow(10, getPrecision()); return Double.valueOf(Math.ceil(Math.log(expandedRange) / Math.log(2.0))).intValue(); } }
/** * Builds a layer by cloning a prototype neuron and adding to it weights such that it is fully * connected to the feeding layer. * * @param layerConfiguration * @param previousLayerAbsoluteSize * @return the built layer. */ @Override public Layer buildLayer(LayerConfiguration layerConfiguration, int previousLayerAbsoluteSize) { prototypeNeuron.setActivationFunction(layerConfiguration.getActivationFunction()); int layerSize = layerConfiguration.getSize(); boolean bias = layerConfiguration.isBias(); // determine correct domain registry DomainRegistry domainRegistry = domainProvider.generateDomain(previousLayerAbsoluteSize); // set domain for prototype neuron prototypeNeuron.setDomain(domainRegistry.getDomainString()); // get prototype weight vector Vector prototypeWeightVector = null; try { prototypeWeightVector = (Vector) domainRegistry.getBuiltRepresentation(); } catch (ClassCastException exception) { throw new UnsupportedOperationException( "The domain string of the neural network weights has to be real valued"); } // add neurons to layer Layer layer = new Layer(); for (int i = 0; i < layerSize; i++) { Neuron newNeuron = prototypeNeuron.getClone(); Vector weights = prototypeWeightVector.getClone(); // TODO: initialisation should be done by training algorithm this.getWeightInitialisationStrategy().initialise(weights); newNeuron.setWeights(weights); layer.add(newNeuron); } if (bias) { layer.add(new BiasNeuron()); layer.setBias(true); } return layer; }