@Override public OptimisationSolution getBestSolution() { OptimisationSolution bestSolution = subPopulationsAlgorithms.get(0).getBestSolution(); for (PopulationBasedAlgorithm currentAlgorithm : subPopulationsAlgorithms) { if (bestSolution.compareTo(currentAlgorithm.getBestSolution()) < 0) { bestSolution = currentAlgorithm.getBestSolution(); } } return bestSolution; }
/** * Perform an algorithm iteration, then restart the {@linkplain Algorithm} and increment the * number of restarts. */ @Override public void algorithmIteration() { algorithm.run(); singleIteration.reset(); OptimisationSolution tmp = optimisationAlgorithm.getBestSolution(); if (tmp.getFitness().compareTo(fitness) > 0) { fitness = tmp.getFitness(); solution = tmp; } if (algorithm.isFinished()) { problem.resetFitnessCounter(); algorithm.performInitialisation(); ++restarts; } }
/** * This is an Synchronous strategy: * * <ol> * <li>For all particles: * <ol> * <li>Update the particle velocity * <li>Update the particle position * </ol> * <li>For all particles: * <ol> * <li>Calculate the particle fitness * <li>For all particles in the current particle's neighbourhood: * <ol> * <li>Update the neighbourhood best * </ol> * </ol> * </ol> * * @see * net.sourceforge.cilib.PSO.IterationStrategy#performIteration(net.sourceforge.cilib.PSO.PSO) * @param pso The {@link PSO} to have an iteration applied. */ @Override public void performIteration(PSO pso) { Topology<Particle> topology = pso.getTopology(); for (Particle current : topology) { current.updateVelocity(); current.updatePosition(); // TODO: replace with visitor (will simplify particle interface) boundaryConstraint.enforce(current); } Problem problem = AbstractAlgorithm.getAlgorithmList().get(0).getOptimisationProblem(); for (Particle current : topology) { current.calculateFitness(); for (Particle other : topology.neighbourhood(current)) { Particle p1 = current.getNeighbourhoodBest().getClone(); Particle p2 = other.getNeighbourhoodBest().getClone(); OptimisationSolution s1 = new OptimisationSolution( p1.getCandidateSolution().getClone(), problem.getFitness(p1.getCandidateSolution().getClone())); OptimisationSolution s2 = new OptimisationSolution( p2.getCandidateSolution().getClone(), problem.getFitness(p2.getCandidateSolution().getClone())); MOFitness fitness1 = (MOFitness) s1.getFitness(); MOFitness fitness2 = (MOFitness) s2.getFitness(); // System.out.println("fitness1 = "); // for (int i=0; i < fitness1.getDimension(); i++) // System.out.println(fitness1.getFitness(i).getValue()); // // System.out.println("fitness2 = "); // for (int i=0; i < fitness2.getDimension(); i++) // System.out.println(fitness2.getFitness(i).getValue()); if (fitness1.compareTo(fitness2) > 0) { other.setNeighbourhoodBest(current); } } } }
@Override public double getPercentageCompleted(Algorithm algorithm) { // check if this is the first iteration if (previousBest == null) { previousBest = algorithm.getBestSolution(); return 0.0; } // get the distance between previous and current best double distance = distMeasure.distance( (Vector) previousBest.getPosition(), (Vector) algorithm.getBestSolution().getPosition()); // compare to see change if (distance < minChange) minChangeCounter++; else minChangeCounter = 0; return minChangeCounter / maxConsecutiveMinChange; }