@Deprecated @operator( value = "neighbors_of", content_type = IType.AGENT, category = {IOperatorCategory.SPATIAL, IOperatorCategory.SP_QUERIES}) /* TODO, expected_content_type = { IType.FLOAT, IType.INT } */ @doc( deprecated = "Use 'neighbours_of(topology, agent, distance)' instead", usages = @usage( value = "a list, containing all the agents of the same species than the key of the pair argument (if it is an agent) located at a distance inferior or equal to the right member (float) of the pair (right-hand operand) to the left member (agent, geometry or point) considering the left-hand operand topology.", examples = { @example( value = "topology(self) neighbors_of self::10", equals = "all the agents located at a distance lower or equal to 10 to the agent applying the operator considering its topology.", test = false) })) public static IList neighbours_of(final IScope scope, final ITopology t, final GamaPair pair) { if (pair == null) { return GamaListFactory.EMPTY_LIST; } Object agent = pair.key; return Spatial.Queries._neighbours( scope, agent instanceof IAgent ? In.list(scope, ((IAgent) agent).getPopulation()) : Different.with(), agent, pair.value, t); // TODO We could compute a filter based on the population if it is an agent }
@operator( value = {"fuzzy_kappa_sim"}, content_type = IType.FLOAT, category = {IOperatorCategory.MAP_COMPARAISON}, concept = {IConcept.MAP}) @doc( value = "fuzzy kappa simulation indicator for 2 map comparisons: fuzzy_kappa_sim(agents_list,list_vals1,list_vals2, output_similarity_per_agents,fuzzy_transitions_matrix, fuzzy_distance, weights). Reference: Jasper van Vliet, Alex Hagen-Zanker, Jelle Hurkens, Hedwig van Delden, A fuzzy set approach to assess the predictive accuracy of land use simulations, Ecological Modelling, 24 July 2013, Pages 32-42, ISSN 0304-3800, ", examples = { @example( value = "fuzzy_kappa_sim([ag1, ag2, ag3, ag4, ag5], [cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],[[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,1]], 2,[1.0,3.0,2.0,2.0,4.0])", isExecutable = false) }) public static double fuzzyKappaSimulation( final IScope scope, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final IList<Object> valsInit, final IList<Object> valsObs, final IList<Object> valsSim, final IList<Double> similarities, final List<Object> categories, final GamaMatrix<Double> fuzzytransitions, final Double distance, final IList<Object> weights) { if (agents == null) { return 1; } int nb = agents.length(scope); if (nb < 1) { return 1; } similarities.clear(); int nbCat = categories.size(); double[] nbObs = new double[nbCat]; double[] nbSim = new double[nbCat]; double[] nbInit = new double[nbCat]; double[][] nbInitObs = new double[nbCat][nbCat]; double[][] nbInitSim = new double[nbCat][nbCat]; Map<Object, Integer> categoriesId = new TOrderedHashMap<Object, Integer>(); Map<List<Integer>, Map<Double, Double>> XaPerTransition = new TOrderedHashMap<List<Integer>, Map<Double, Double>>(); Map<List<Integer>, Map<Double, Double>> XsPerTransition = new TOrderedHashMap<List<Integer>, Map<Double, Double>>(); Set<Double> Xvals = new HashSet<Double>(); for (int i = 0; i < nbCat; i++) { categoriesId.put(categories.get(i), i); } for (int i = 0; i < nbCat; i++) { nbInit[i] = 0; nbObs[i] = 0; nbSim[i] = 0; for (int j = 0; j < nbCat; j++) { nbInitObs[i][j] = 0; nbInitSim[i][j] = 0; } } IAgentFilter filter = In.list(scope, agents); double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); total += weight; int idCatInit = categoriesId.get(valsInit.get(i)); int idCatObs = categoriesId.get(valsObs.get(i)); int idCatSim = categoriesId.get(valsSim.get(i)); nbInit[idCatInit] += weight; nbSim[idCatSim] += weight; nbObs[idCatObs] += weight; nbInitObs[idCatInit][idCatObs] += weight; nbInitSim[idCatInit][idCatSim] += weight; } double po = computePo( scope, filter, categoriesId, fuzzytransitions, distance, valsInit, valsObs, valsSim, agents, nbCat, nb, similarities, weights); double pe = 0; computeXaXsTransitions( scope, filter, fuzzytransitions, distance, agents, nbCat, XaPerTransition, XsPerTransition, Xvals); for (int i = 0; i < nbCat; i++) { for (int j = 0; j < nbCat; j++) { for (int k = 0; k < nbCat; k++) { List<Integer> ca = new ArrayList<Integer>(); ca.add(i); ca.add(j); ca.add(k); Map<Double, Double> pmuXa = XaPerTransition.get(ca); Map<Double, Double> pmuXs = XsPerTransition.get(ca); double emu = 0; for (Double xval : Xvals) { double XaVal = pmuXa == null || !pmuXa.containsKey(xval) ? 0 : pmuXa.get(xval); double XsVal = pmuXs == null || !pmuXs.containsKey(xval) ? 0 : pmuXs.get(xval); double proba = xval * XaVal * XsVal; emu += proba; } double poas = nbInit[i] == 0 ? 0 : nbInitObs[i][j] / nbInit[i] * nbInitSim[i][k] / total; pe += emu * poas; } } } if (pe == 1) { return 1; } return (po - pe) / (1 - pe); }
@operator( value = {"fuzzy_kappa"}, content_type = IType.FLOAT, category = {IOperatorCategory.MAP_COMPARAISON}, concept = {}) @doc( value = "fuzzy kappa indicator for 2 map comparisons: fuzzy_kappa(agents_list,list_vals1,list_vals2, output_similarity_per_agents,categories,fuzzy_categories_matrix, fuzzy_distance, weights). Reference: Visser, H., and T. de Nijs, 2006. The map comparison kit, Environmental Modelling & Software, 21", examples = { @example( value = "fuzzy_kappa([ag1, ag2, ag3, ag4, ag5],[cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],[[1,0,0],[0,1,0],[0,0,1]], 2, [1.0,3.0,2.0,2.0,4.0])", isExecutable = false) }) public static double fuzzyKappa( final IScope scope, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final IList<Object> vals1, final IList<Object> vals2, final IList<Double> similarities, final List<Object> categories, final GamaMatrix<Double> fuzzycategories, final Double distance, final IList<Object> weights) { if (agents == null) { return 1; } int nb = agents.length(scope); if (nb < 1) { return 1; } int nbCat = categories.size(); similarities.clear(); boolean[] sim = new boolean[nb]; double[][] crispVector1 = new double[nb][nbCat]; double[][] crispVector2 = new double[nb][nbCat]; double[][] fuzzyVector1 = new double[nb][nbCat]; double[][] fuzzyVector2 = new double[nb][nbCat]; double[] X = new double[nbCat]; double[] Y = new double[nbCat]; Map<Object, Integer> categoriesId = new TOrderedHashMap<Object, Integer>(); for (int i = 0; i < nbCat; i++) { categoriesId.put(categories.get(i), i); } IAgentFilter filter = In.list(scope, agents); computeXYCrispVector( scope, categoriesId, categories, vals1, vals2, fuzzycategories, nbCat, nb, crispVector1, crispVector2, X, Y, sim, weights); double meanSimilarity = computeSimilarity( scope, filter, distance, vals1, vals2, agents, nbCat, nb, crispVector1, crispVector2, sim, fuzzyVector1, fuzzyVector2, similarities, weights); List<Double> rings = new ArrayList<Double>(); Map<Double, Integer> ringsPn = new TOrderedHashMap<Double, Integer>(); int nbRings = buildRings(scope, filter, distance, rings, ringsPn, agents); double similarityExpected = computeExpectedSim(nbCat, X, Y, nbRings, rings, ringsPn); if (similarityExpected == 1) { return 1; } return (meanSimilarity - similarityExpected) / (1 - similarityExpected); }