@operator( value = {"percent_absolute_deviation"}, content_type = IType.FLOAT, category = {IOperatorCategory.MAP_COMPARAISON}, concept = {IConcept.STATISTIC}) @doc( value = "percent absolute deviation indicator for 2 series of values: percent_absolute_deviation(list_vals_observe,list_vals_sim)", examples = { @example( value = "percent_absolute_deviation([200,300,150,150,200],[250,250,100,200,200])", isExecutable = false) }) public static double percentAbsoluteDeviation( final IScope scope, final IList<Double> vals1, final IList<Double> vals2) { if (vals1 == null || vals2 == null) { return 1; } int nb = vals1.size(); if (nb != vals2.size()) { return 0; } double sum = 0; double coeff = 0; for (int i = 0; i < nb; i++) { double val1 = Cast.asFloat(scope, vals1.get(i)); double val2 = Cast.asFloat(scope, vals2.get(i)); coeff += val1; sum += FastMath.abs(val1 - val2) * 100.0; } if (coeff == 0) { return 0; } return sum / coeff; }
private static double computePo( final IScope scope, final IAgentFilter filter, final Map<Object, Integer> categoriesId, final GamaMatrix<Double> fuzzytransitions, final Double distance, final IList<Object> valsInit, final IList<Object> valsObs, final IList<Object> valsSim, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final int nbCat, final int nb, final IList<Double> similarities, final IList<Object> weights) { Map<IAgent, Integer> agsId = new TOrderedHashMap<IAgent, Integer>(); for (int i = 0; i < agents.length(scope); i++) { agsId.put(agents.get(scope, i), i); } for (int i = 0; i < nb; i++) { Object valObs = valsObs.get(i); Object valSim = valsSim.get(i); Object valInit = valsInit.get(i); int valObsId = categoriesId.get(valObs); int valSimId = categoriesId.get(valSim); int valInitId = categoriesId.get(valInit); IAgent agent = agents.get(scope, i); double[] XaXs = computeXaXs( scope, filter, categoriesId, agsId, valObsId, valSimId, valInitId, fuzzytransitions, distance, agent, valsInit, valsObs, valsSim, agents, nbCat); similarities.add(FastMath.min(XaXs[0], XaXs[1])); } double meanSimilarity = 0; double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); double val = weight * similarities.get(i); total += weight; meanSimilarity += val; } meanSimilarity /= total; return meanSimilarity; }
private static void computeXYCrispVector( final IScope scope, final Map<Object, Integer> categoriesId, final List<Object> categories, final IList<Object> vals1, final IList<Object> vals2, final GamaMatrix<Double> fuzzycategories, final int nbCat, final int nb, final double[][] crispVector1, final double[][] crispVector2, final double[] X, final double[] Y, final boolean[] sim, final IList<Object> weights) { for (int j = 0; j < nbCat; j++) { X[j] = 0; Y[j] = 0; } double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); total += weight; Object val1 = vals1.get(i); Object val2 = vals2.get(i); int indexVal1 = categoriesId.get(val1); int indexVal2 = categoriesId.get(val2); X[indexVal1] += weight; Y[indexVal2] += weight; for (int j = 0; j < nbCat; j++) { crispVector1[i][j] = Cast.asFloat(scope, fuzzycategories.get(scope, indexVal1, j)); crispVector2[i][j] = Cast.asFloat(scope, fuzzycategories.get(scope, indexVal2, j)); } if (val1.equals(val2)) { sim[i] = true; } else { sim[i] = false; } } for (int j = 0; j < nbCat; j++) { X[j] /= total; Y[j] /= total; } }
private static double computeSimilarity( final IScope scope, final IAgentFilter filter, final Double distance, final IList<Object> vals1, final IList<Object> vals2, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final int nbCat, final int nb, final double[][] crispVector1, final double[][] crispVector2, final boolean[] sim, final double[][] fuzzyVector1, final double[][] fuzzyVector2, final IList<Double> similarities, final IList<Object> weights) { Map<IAgent, Integer> agsId = new TOrderedHashMap<IAgent, Integer>(); for (int i = 0; i < agents.length(scope); i++) { agsId.put(agents.get(scope, i), i); } for (int i = 0; i < nb; i++) { if (sim[i]) { similarities.add(1.0); } else { IAgent agent = agents.get(scope, i); // double sizeNorm = agent.getPerimeter() / 4.0; double sizeNorm = FastMath.sqrt(agent.getEnvelope().getArea()); List<IAgent> neighbors = distance == 0 || filter == null ? new ArrayList<IAgent>() : new ArrayList<IAgent>( scope.getTopology().getNeighborsOf(scope, agent, distance, filter)); Map<IAgent, Double> distancesCoeff = new TOrderedHashMap<IAgent, Double>(); distancesCoeff.put(agent, 1.0); for (IAgent ag : neighbors) { double euclidDist = agent.getLocation().euclidianDistanceTo(ag.getLocation()); distancesCoeff.put(ag, 1 / (1.0 + euclidDist / sizeNorm)); } for (int j = 0; j < nbCat; j++) { double max1 = 0.0; double max2 = 0.0; for (IAgent ag : neighbors) { int id = agsId.get(ag); double val1 = crispVector1[id][j] * distancesCoeff.get(ag); double val2 = crispVector2[id][j] * distancesCoeff.get(ag); if (val1 > max1) { max1 = val1; } if (val2 > max2) { max2 = val2; } } fuzzyVector1[i][j] = max1; fuzzyVector2[i][j] = max2; } double s1Max = -1 * Double.MAX_VALUE; double s2Max = -1 * Double.MAX_VALUE; for (int j = 0; j < nbCat; j++) { double s1 = FastMath.min(fuzzyVector1[i][j], crispVector2[i][j]); double s2 = FastMath.min(fuzzyVector2[i][j], crispVector1[i][j]); if (s1 > s1Max) { s1Max = s1; } if (s2 > s2Max) { s2Max = s2; } } similarities.add(FastMath.min(s1Max, s2Max)); } } double meanSimilarity = 0; double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); double val = weight * similarities.get(i); total += weight; meanSimilarity += val; } meanSimilarity /= total; return meanSimilarity; }
@operator( value = {"kappa"}, content_type = IType.FLOAT, category = {IOperatorCategory.MAP_COMPARAISON}, concept = {}) @doc( value = "kappa indicator for 2 map comparisons: kappa(list_vals1,list_vals2,categories, weights). Reference: Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20. ", examples = { @example( value = "kappa([cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2],[cat1,cat2,cat3], [1.0, 2.0, 3.0, 1.0, 5.0])", isExecutable = false) }) public static double kappa( final IScope scope, final IList<Object> vals1, final IList<Object> vals2, final List<Object> categories, final IList<Object> weights) { if (vals1 == null || vals2 == null) { return 1; } int nb = vals1.size(); if (nb != vals2.size()) { return 0; } int nbCat = categories.size(); double[] X = new double[nbCat]; double[] Y = new double[nbCat]; double[][] contigency = new double[nbCat][nbCat]; for (int j = 0; j < nbCat; j++) { X[j] = 0; Y[j] = 0; for (int k = 0; k < nbCat; k++) { contigency[j][k] = 0; } } Map<Object, Integer> categoriesId = new TOrderedHashMap<Object, Integer>(); for (int i = 0; i < nbCat; i++) { categoriesId.put(categories.get(i), i); } double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); total += weight; Object val1 = vals1.get(i); Object val2 = vals2.get(i); int indexVal1 = categoriesId.get(val1); int indexVal2 = categoriesId.get(val2); X[indexVal1] += weight; Y[indexVal2] += weight; contigency[indexVal1][indexVal2] += weight; } for (int j = 0; j < nbCat; j++) { X[j] /= total; Y[j] /= total; for (int k = 0; k < nbCat; k++) { contigency[j][k] /= total; } } double po = 0; double pe = 0; for (int i = 0; i < nbCat; i++) { po += contigency[i][i]; pe += X[i] * Y[i]; } if (pe == 1) { return 1; } return (po - pe) / (1 - pe); }
@operator( value = {"fuzzy_kappa_sim"}, content_type = IType.FLOAT, category = {IOperatorCategory.MAP_COMPARAISON}, concept = {IConcept.MAP}) @doc( value = "fuzzy kappa simulation indicator for 2 map comparisons: fuzzy_kappa_sim(agents_list,list_vals1,list_vals2, output_similarity_per_agents,fuzzy_transitions_matrix, fuzzy_distance, weights). Reference: Jasper van Vliet, Alex Hagen-Zanker, Jelle Hurkens, Hedwig van Delden, A fuzzy set approach to assess the predictive accuracy of land use simulations, Ecological Modelling, 24 July 2013, Pages 32-42, ISSN 0304-3800, ", examples = { @example( value = "fuzzy_kappa_sim([ag1, ag2, ag3, ag4, ag5], [cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],[[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,1]], 2,[1.0,3.0,2.0,2.0,4.0])", isExecutable = false) }) public static double fuzzyKappaSimulation( final IScope scope, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final IList<Object> valsInit, final IList<Object> valsObs, final IList<Object> valsSim, final IList<Double> similarities, final List<Object> categories, final GamaMatrix<Double> fuzzytransitions, final Double distance, final IList<Object> weights) { if (agents == null) { return 1; } int nb = agents.length(scope); if (nb < 1) { return 1; } similarities.clear(); int nbCat = categories.size(); double[] nbObs = new double[nbCat]; double[] nbSim = new double[nbCat]; double[] nbInit = new double[nbCat]; double[][] nbInitObs = new double[nbCat][nbCat]; double[][] nbInitSim = new double[nbCat][nbCat]; Map<Object, Integer> categoriesId = new TOrderedHashMap<Object, Integer>(); Map<List<Integer>, Map<Double, Double>> XaPerTransition = new TOrderedHashMap<List<Integer>, Map<Double, Double>>(); Map<List<Integer>, Map<Double, Double>> XsPerTransition = new TOrderedHashMap<List<Integer>, Map<Double, Double>>(); Set<Double> Xvals = new HashSet<Double>(); for (int i = 0; i < nbCat; i++) { categoriesId.put(categories.get(i), i); } for (int i = 0; i < nbCat; i++) { nbInit[i] = 0; nbObs[i] = 0; nbSim[i] = 0; for (int j = 0; j < nbCat; j++) { nbInitObs[i][j] = 0; nbInitSim[i][j] = 0; } } IAgentFilter filter = In.list(scope, agents); double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); total += weight; int idCatInit = categoriesId.get(valsInit.get(i)); int idCatObs = categoriesId.get(valsObs.get(i)); int idCatSim = categoriesId.get(valsSim.get(i)); nbInit[idCatInit] += weight; nbSim[idCatSim] += weight; nbObs[idCatObs] += weight; nbInitObs[idCatInit][idCatObs] += weight; nbInitSim[idCatInit][idCatSim] += weight; } double po = computePo( scope, filter, categoriesId, fuzzytransitions, distance, valsInit, valsObs, valsSim, agents, nbCat, nb, similarities, weights); double pe = 0; computeXaXsTransitions( scope, filter, fuzzytransitions, distance, agents, nbCat, XaPerTransition, XsPerTransition, Xvals); for (int i = 0; i < nbCat; i++) { for (int j = 0; j < nbCat; j++) { for (int k = 0; k < nbCat; k++) { List<Integer> ca = new ArrayList<Integer>(); ca.add(i); ca.add(j); ca.add(k); Map<Double, Double> pmuXa = XaPerTransition.get(ca); Map<Double, Double> pmuXs = XsPerTransition.get(ca); double emu = 0; for (Double xval : Xvals) { double XaVal = pmuXa == null || !pmuXa.containsKey(xval) ? 0 : pmuXa.get(xval); double XsVal = pmuXs == null || !pmuXs.containsKey(xval) ? 0 : pmuXs.get(xval); double proba = xval * XaVal * XsVal; emu += proba; } double poas = nbInit[i] == 0 ? 0 : nbInitObs[i][j] / nbInit[i] * nbInitSim[i][k] / total; pe += emu * poas; } } } if (pe == 1) { return 1; } return (po - pe) / (1 - pe); }
@operator( value = {"kappa_sim"}, content_type = IType.FLOAT, category = {IOperatorCategory.MAP_COMPARAISON}, concept = {}) @doc( value = "kappa simulation indicator for 2 map comparisons: kappa(list_valsInits,list_valsObs,list_valsSim, categories, weights). Reference: van Vliet, J., Bregt, A.K. & Hagen-Zanker, A. (2011). Revisiting Kappa to account for change in the accuracy assessment of land-use change models, Ecological Modelling 222(8)", examples = { @example( value = "kappa([cat1,cat1,cat2,cat2,cat2],[cat2,cat1,cat2,cat1,cat3],[cat2,cat1,cat2,cat3,cat3], [cat1,cat2,cat3],[1.0, 2.0, 3.0, 1.0, 5.0])", isExecutable = false) }) public static double kappaSimulation( final IScope scope, final IList<Object> valsInit, final IList<Object> valsObs, final IList<Object> valsSim, final List<Object> categories, final IList<Object> weights) { if (valsInit == null || valsObs == null || valsSim == null) { return 1; } int nb = valsInit.size(); if (nb != valsObs.size() || nb != valsSim.size()) { return 0; } int nbCat = categories.size(); double[] O = new double[nbCat]; double[][] contigency = new double[nbCat][nbCat]; double[][] contigencyOA = new double[nbCat][nbCat]; double[][] contigencyOS = new double[nbCat][nbCat]; for (int j = 0; j < nbCat; j++) { O[j] = 0; for (int k = 0; k < nbCat; k++) { contigency[j][k] = 0; contigencyOA[j][k] = 0; contigencyOS[j][k] = 0; } } Map<Object, Integer> categoriesId = new TOrderedHashMap<Object, Integer>(); for (int i = 0; i < nbCat; i++) { categoriesId.put(categories.get(i), i); } double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); total += weight; Object val1 = valsObs.get(i); Object val2 = valsSim.get(i); Object valO = valsInit.get(i); int indexVal1 = categoriesId.get(val1); int indexVal2 = categoriesId.get(val2); int indexValO = categoriesId.get(valO); O[indexValO] += weight; contigency[indexVal1][indexVal2] += weight; contigencyOA[indexValO][indexVal1] += weight; contigencyOS[indexValO][indexVal2] += weight; } for (int j = 0; j < nbCat; j++) { for (int k = 0; k < nbCat; k++) { contigency[j][k] /= total; if (O[j] > 0) { contigencyOA[j][k] /= O[j]; contigencyOS[j][k] /= O[j]; } } O[j] /= total; } double po = 0; double pe = 0; for (int j = 0; j < nbCat; j++) { po += contigency[j][j]; double sum = 0; for (int i = 0; i < nbCat; i++) { sum += contigencyOA[j][i] * contigencyOS[j][i]; } pe += O[j] * sum; } if (pe == 1) { return 1; } return (po - pe) / (1 - pe); }