public static void main(String[] args) throws JMException, ClassNotFoundException { int numberOfVariables = 20; int populationSize = 10; int maxEvaluations = 1000000; Problem problem; // The problem to solve Algorithm algorithm; // The algorithm to use // problem = new Sphere("Real", numberOfVariables) ; // problem = new Easom("Real") ; // problem = new Griewank("Real", populationSize) ; // problem = new Schwefel("Real", numberOfVariables) ; problem = new Rosenbrock("Real", numberOfVariables); // problem = new Rastrigin("Real", numberOfVariables) ; algorithm = new CMAES(problem); /* Algorithm parameters*/ algorithm.setInputParameter("populationSize", populationSize); algorithm.setInputParameter("maxEvaluations", maxEvaluations); /* Execute the Algorithm */ long initTime = System.currentTimeMillis(); SolutionSet population = algorithm.execute(); long estimatedTime = System.currentTimeMillis() - initTime; System.out.println("Total execution time: " + estimatedTime); /* Log messages */ System.out.println("Objectives values have been written to file FUN"); population.printObjectivesToFile("FUN"); System.out.println("Variables values have been written to file VAR"); population.printVariablesToFile("VAR"); } // main
public static void main(String[] args) throws JMException, ClassNotFoundException { Problem problem; // The problem to solve Algorithm algorithm; // The algorithm to use Operator crossover; // Crossover operator Operator mutation; // Mutation operator Operator selection; // Selection operator // int bits ; // Length of bit string in the OneMax problem HashMap parameters; // Operator parameters int threads = 4; // 0 - use all the available cores IParallelEvaluator parallelEvaluator = new MultithreadedEvaluator(threads); // problem = new Sphere("Real", 10) ; problem = new Griewank("Real", 10); algorithm = new pgGA(problem, parallelEvaluator); // Generational GA /* Algorithm parameters*/ algorithm.setInputParameter("populationSize", 100); algorithm.setInputParameter("maxEvaluations", 2500000); // Mutation and Crossover for Real codification parameters = new HashMap(); parameters.put("probability", 0.9); parameters.put("distributionIndex", 20.0); crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover", parameters); parameters = new HashMap(); parameters.put("probability", 1.0 / problem.getNumberOfVariables()); parameters.put("distributionIndex", 20.0); mutation = MutationFactory.getMutationOperator("PolynomialMutation", parameters); /* Selection Operator */ parameters = null; selection = SelectionFactory.getSelectionOperator("BinaryTournament", parameters); /* Add the operators to the algorithm*/ algorithm.addOperator("crossover", crossover); algorithm.addOperator("mutation", mutation); algorithm.addOperator("selection", selection); /* Execute the Algorithm */ long initTime = System.currentTimeMillis(); SolutionSet population = algorithm.execute(); long estimatedTime = System.currentTimeMillis() - initTime; System.out.println("Total execution time: " + estimatedTime); /* Log messages */ System.out.println("Objectives values have been writen to file FUN"); population.printObjectivesToFile("FUN"); System.out.println("Variables values have been writen to file VAR"); population.printVariablesToFile("VAR"); } // main
/** * @param args Command line arguments. The first (optional) argument specifies the problem to * solve. * @throws JMException */ public static void main(String[] args) throws JMException, IOException, ClassNotFoundException { Problem problem; // The problem to solve Algorithm algorithm; // The algorithm to use Operator crossover; // Crossover operator Operator mutation; // Mutation operator Operator selection; // Selection operator QualityIndicator indicators; // Object to get quality indicators HashMap parameters; // Operator parameters // Logger object and file to store log messages logger_ = Configuration.logger_; fileHandler_ = new FileHandler("FastPGA_main.log"); logger_.addHandler(fileHandler_); indicators = null; if (args.length == 1) { Object[] params = {"Real"}; problem = (new ProblemFactory()).getProblem(args[0], params); } // if else if (args.length == 2) { Object[] params = {"Real"}; problem = (new ProblemFactory()).getProblem(args[0], params); indicators = new QualityIndicator(problem, args[1]); } // if else { // Default problem problem = new Kursawe("Real", 3); // problem = new Kursawe("BinaryReal", 3); // problem = new Water("Real"); // problem = new ZDT1("ArrayReal", 100); // problem = new ConstrEx("Real"); // problem = new DTLZ1("Real"); // problem = new OKA2("Real") ; } // else algorithm = new FastPGA(problem); algorithm.setInputParameter("maxPopSize", 100); algorithm.setInputParameter("initialPopulationSize", 100); algorithm.setInputParameter("maxEvaluations", 25000); algorithm.setInputParameter("a", 20.0); algorithm.setInputParameter("b", 1.0); algorithm.setInputParameter("c", 20.0); algorithm.setInputParameter("d", 0.0); // Parameter "termination" // If the preferred stopping criterium is PPR based, termination must // be set to 0; otherwise, if the algorithm is intended to iterate until // a give number of evaluations is carried out, termination must be set to // that number algorithm.setInputParameter("termination", 1); // Mutation and Crossover for Real codification parameters = new HashMap(); parameters.put("probability", 0.9); parameters.put("distributionIndex", 20.0); crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover", parameters); // crossover.setParameter("probability",0.9); // crossover.setParameter("distributionIndex",20.0); parameters = new HashMap(); parameters.put("probability", 1.0 / problem.getNumberOfVariables()); parameters.put("distributionIndex", 20.0); mutation = MutationFactory.getMutationOperator("PolynomialMutation", parameters); // Mutation and Crossover for Binary codification parameters = new HashMap(); parameters.put("comparator", new FPGAFitnessComparator()); selection = new BinaryTournament(parameters); algorithm.addOperator("crossover", crossover); algorithm.addOperator("mutation", mutation); algorithm.addOperator("selection", selection); long initTime = System.currentTimeMillis(); SolutionSet population = algorithm.execute(); long estimatedTime = System.currentTimeMillis() - initTime; // Result messages logger_.info("Total execution time: " + estimatedTime + "ms"); logger_.info("Variables values have been writen to file VAR"); population.printVariablesToFile("VAR"); logger_.info("Objectives values have been writen to file FUN"); population.printObjectivesToFile("FUN"); if (indicators != null) { logger_.info("Quality indicators"); logger_.info("Hypervolume: " + indicators.getHypervolume(population)); logger_.info("GD : " + indicators.getGD(population)); logger_.info("IGD : " + indicators.getIGD(population)); logger_.info("Spread : " + indicators.getSpread(population)); logger_.info("Epsilon : " + indicators.getEpsilon(population)); int evaluations = ((Integer) algorithm.getOutputParameter("evaluations")).intValue(); logger_.info("Speed : " + evaluations + " evaluations"); } // if } // main