public static MiningResult importFile(InputStream input) throws IOException { try { DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance(); Document doc; // NodeList netNodes; dbf.setValidating(false); dbf.setIgnoringComments(true); dbf.setIgnoringElementContentWhitespace(true); // dbf.setExpandEntityReferences(false); // dbf.setNamespaceAware(false); DocumentBuilder db = dbf.newDocumentBuilder(); db.setEntityResolver( new EntityResolver() { public InputSource resolveEntity(String publicId, String systemId) { if (systemId.indexOf("ARIS-Export") != -1) { return new InputSource("file:" + About.EXTLIBLOCATION() + "ARIS-Export101.dtd"); } else { return null; } } }); InputSource inpStream = new InputSource(input); inpStream.setSystemId("file:" + System.getProperty("user.dir", "")); doc = db.parse(inpStream); // check if root element is a aml tag Message.add("parsing done" + doc, Message.DEBUG); if (!(doc.getDocumentElement().getNodeName().equals("AML"))) { Message.add("aml tag not found", Message.ERROR); throw new Exception("aml tag not found"); } else { Message.add("aml root element found"); } EPCResult result = new EPCResult(null, (EPC) null); HashMap ObjDef_LinkId = new HashMap(); HashMap modelid_net = new HashMap(); HashMap ObjDef_Name = new HashMap(); HashMap function_LinkId = new HashMap(); HashMap ModelId_ModelType = new HashMap(); traverseAMLforObjectNames( ObjDef_Name, doc.getDocumentElement(), ObjDef_LinkId, ModelId_ModelType); Iterator findLinkToEpc = ObjDef_LinkId.keySet().iterator(); while (findLinkToEpc.hasNext()) { String currentObjDef = (String) findLinkToEpc.next(); String Links = (String) ObjDef_LinkId.get(currentObjDef); StringTokenizer linkSet = new StringTokenizer(Links); String realEpcLink = ""; while (linkSet.hasMoreTokens()) { String currentLink = linkSet.nextToken(); if (ModelId_ModelType.get(currentLink).equals("MT_EEPC")) { realEpcLink = currentLink; break; } } if (realEpcLink.equals(" ")) { ObjDef_LinkId.remove(currentObjDef); } else { ObjDef_LinkId.put(currentObjDef, realEpcLink); } } result = traverseAML( result, doc.getDocumentElement(), null, ObjDef_Name, ObjDef_LinkId, modelid_net, function_LinkId); Iterator hierarchicalFunctions = function_LinkId.keySet().iterator(); while (hierarchicalFunctions.hasNext()) { EPCSubstFunction f = (EPCSubstFunction) hierarchicalFunctions.next(); f.setSubstitutedEPC((EPC) modelid_net.get(function_LinkId.get(f))); // Message.add(f.getSubstitutedEPC().getName()); } return result; } catch (Throwable x) { Message.add(x.toString()); throw new IOException(x.getMessage()); } }
private static void parseNet( Node node, EPC net, HashMap ObjDef_Name, HashMap ObjDef_LinkId, HashMap function_LinkId, String ModelName) throws Exception { HashMap mapping = new HashMap(); // read all nodes NodeList nodes = node.getChildNodes(); net.setIdentifier(ModelName); // Message.add("here I am still happy"); for (int i = 0; i < nodes.getLength(); i++) { Node n = nodes.item(i); if (!n.getNodeName().equals("ObjOcc")) { continue; } if (n.getAttributes().getNamedItem("SymbolNum") == null) { continue; } String symbolnum = n.getAttributes().getNamedItem("SymbolNum").getNodeValue(); if (!(symbolnum.equals("ST_FUNC") || symbolnum.equals("ST_EV") || symbolnum.equals("ST_OPR_AND_1") || symbolnum.equals("ST_OPR_OR_1") || symbolnum.equals("ST_OPR_XOR_1"))) { continue; } String ObjDef = n.getAttributes().getNamedItem("ObjDef.IdRef").getNodeValue(); String ownName = (String) ObjDef_Name.get(ObjDef); // Message.add("YES " + // n.getAttributes().getNamedItem("ObjOcc.ID").getNodeValue()); String id = n.getAttributes().getNamedItem("ObjOcc.ID").getNodeValue(); // Message.add(id + " " + ownName); if (ownName == null || ownName == "") { ownName = id.substring(7, 11); } if (symbolnum.equals("ST_FUNC")) { if (ObjDef_LinkId.containsKey(ObjDef)) { EPCSubstFunction sf = (EPCSubstFunction) net.addFunction( new EPCSubstFunction(new LogEvent(ownName, "unknown:normal"), net, null)); sf.setIdentifier(ownName); mapping.put(id, sf); function_LinkId.put(sf, ObjDef_LinkId.get(ObjDef)); } else { EPCFunction f = net.addFunction(new EPCFunction(new LogEvent(ownName, "unknown:normal"), net)); f.setIdentifier(ownName); mapping.put(id, f); } } else if (symbolnum.equals("ST_EV")) { EPCEvent e = net.addEvent(new EPCEvent(ownName, net)); e.setIdentifier(ownName); mapping.put(id, e); } else if (symbolnum.equals("ST_OPR_AND_1")) { EPCConnector c = net.addConnector(new EPCConnector(EPCConnector.AND, net)); mapping.put(id, c); } else if (symbolnum.equals("ST_OPR_OR_1")) { // EPCConnector c = net.addConnector(new // EPCConnector(EPCConnector.OR, net)); EPCConnector c = net.addConnector(new EPCConnector(EPCConnector.AND, net)); mapping.put(id, c); } else if (symbolnum.equals("ST_OPR_XOR_1")) { EPCConnector c = net.addConnector(new EPCConnector(EPCConnector.XOR, net)); mapping.put(id, c); } } for (int i = 0; i < nodes.getLength(); i++) { Node n = nodes.item(i); if (!n.getNodeName().equals("ObjOcc")) { continue; } if (n.getAttributes().getNamedItem("SymbolNum") == null) { continue; } String symbolnum = n.getAttributes().getNamedItem("SymbolNum").getNodeValue(); if (!(symbolnum.equals("ST_FUNC") || symbolnum.equals("ST_EV") || symbolnum.equals("ST_OPR_AND_1") || symbolnum.equals("ST_OPR_OR_1") || symbolnum.equals("ST_OPR_XOR_1"))) { continue; } String source = n.getAttributes().getNamedItem("ObjOcc.ID").getNodeValue(); if (n.hasChildNodes()) { for (int j = 0; j < n.getChildNodes().getLength(); j++) { if (n.getChildNodes().item(j).getNodeName().equals("CxnOcc")) { Node CxnOcc = n.getChildNodes().item(j); String dest = CxnOcc.getAttributes().getNamedItem("ToObjOcc.IdRef").getNodeValue(); if (mapping.get(dest) == null) { continue; } if (net.addEdge((EPCObject) mapping.get(source), (EPCObject) mapping.get(dest)) == null) { throw (new Exception( "<html>Structural properties of EPCs are violated in input file.<br>" + "The following edge could not be added:<br><br>" + mapping.get(source).toString() + " ==> " + mapping.get(dest).toString() + "<br><br>Import aborted.</html>")); } } } } } }
public static PetriNet convert(ConfigurableEPC baseEPC) { HashMap<EPCFunction, Transition> functionActivityMapping; HashMap<EPCConnector, Place> xorconnectorChoiceMapping; // HV: Initialize the mappings. functionActivityMapping = new HashMap<EPCFunction, Transition>(); xorconnectorChoiceMapping = new HashMap<EPCConnector, Place>(); // Check to use the weights if necessary // HV: Add both mappings. On completion, these will be filledd. PetriNet petrinet = EPCToPetriNetConverter.convert( baseEPC, new HashMap(), functionActivityMapping, xorconnectorChoiceMapping); HashSet visible = new HashSet(); // HV: The next block is taken care of by the functionActivityMapping // below. /* * Iterator it = petrinet.getTransitions().iterator(); while * (it.hasNext()) { Transition t = (Transition) it.next(); if (t.object * instanceof EPCFunction) { // if (t.getLogEvent() != null) { // Add * transitions with LogEvent (i.e. referring to functions) * visible.add(t); } } */ // HV: Prevent the places mapped onto from being reduced. visible.addAll(functionActivityMapping.values()); visible.addAll(xorconnectorChoiceMapping.values()); Message.add(visible.toString(), Message.DEBUG); Iterator it = petrinet.getPlaces().iterator(); while (it.hasNext()) { Place p = (Place) it.next(); if (p.inDegree() * p.outDegree() == 0) { // Add Initial and final places to visible, i.e. places that // refer to in and output events visible.add(p); } } // Reduce the PetriNet with Murata rules, while keeping the visible ones PetriNetReduction pnred = new PetriNetReduction(); pnred.setNonReducableNodes(visible); HashMap pnMap = new HashMap(); // Used to map pre-reduction nodes to // post-reduction nodes. PetriNet reduced = pnred.reduce(petrinet, pnMap); if (reduced != petrinet) { // Update both mappings from pre-reduction nodes to post-reduction // nodes. HashMap<EPCFunction, Transition> newFunctionActivityMapping = new HashMap<EPCFunction, Transition>(); for (EPCFunction function : functionActivityMapping.keySet()) { Transition transition = (Transition) functionActivityMapping.get(function); if (pnMap.keySet().contains(transition)) { newFunctionActivityMapping.put(function, (Transition) pnMap.get(transition)); } } functionActivityMapping = newFunctionActivityMapping; HashMap<EPCConnector, Place> newXorconnectorChoiceMapping = new HashMap<EPCConnector, Place>(); for (EPCConnector connector : xorconnectorChoiceMapping.keySet()) { Place place = (Place) xorconnectorChoiceMapping.get(connector); if (pnMap.keySet().contains(place)) { newXorconnectorChoiceMapping.put(connector, (Place) pnMap.get(place)); } } xorconnectorChoiceMapping = newXorconnectorChoiceMapping; } reduced.makeClusters(); // filter the \nunknown:normal ArrayList<Transition> alTrans = reduced.getVisibleTasks(); for (int i = 0; i < alTrans.size(); i++) { Transition t = alTrans.get(i); String id = t.getIdentifier(); int idx = id.indexOf("\\nunknown:normal"); if (idx > 0) { id = id.substring(0, idx); } // �˴������ֵ��ѯ�滻���е�label String mappedId = htDict.get(id); if (mappedId != null) { t.setIdentifier(mappedId); } else { t.setIdentifier(id); } } return reduced; }
/** * Provides the value of a particular default field, null if undefined. * * @param field default field to retrieve * @return value corresponding to default field */ public static String getDefault(Default field) { return DEFAULTS.get(field); }
/** * Adds additional entries to the extraparams hashmap by processing various rules defined in the * TDT definition files. Typically used for string processing functions, lookup in tables, * calculation of check digits etc. */ private void processRules(Map<String, String> extraparams, Rule tdtrule) { String tdtfunction = tdtrule.getFunction(); int openbracket = tdtfunction.indexOf("("); assert openbracket != -1; String params = tdtfunction.substring(openbracket + 1, tdtfunction.length() - 1); String rulename = tdtfunction.substring(0, openbracket); String[] parameter = params.split(","); String newfieldname = tdtrule.getNewFieldName(); // System.out.println(tdtfunction + " " + parameter[0] + " " + extraparams.get(parameter[0])); /** * Stores in the hashmap extraparams the value obtained from a lookup in a specified XML table. * * <p>The first parameter is the given value already known. This is denoted as $1 in the * corresponding XPath expression * * <p>The second parameter is the string filename of the table which must be present in the * auxiliary subdirectory * * <p>The third parameter is the column in which the supplied input value should be sought * * <p>The fourth parameter is the column whose value should be read for the corresponding row, * in order to obtain the result of the lookup. * * <p>The rule in the definition file may contain an XPath expression and a URL where the table * may be obtained. */ if (rulename.equals("TABLELOOKUP")) { // parameter[0] is given value // parameter[1] is table // parameter[2] is input column supplied // parameter[3] is output column required assert parameter.length == 4 : "incorrect number of parameters to tablelookup " + params; if (parameter[1].equals("tdt64bitcpi")) { String s = extraparams.get(parameter[0]); assert s != null : tdtfunction + " when " + parameter[0] + " is null"; String t = gs1cpi.get(s); assert t != null : "gs1cpi[" + s + "] is null"; assert newfieldname != null; extraparams.put(newfieldname, t); // extraparams.put(newfieldname, gs1cpi.get(extraparams.get(parameter[0]))); } else { // JPB! the following is untested String tdtxpath = tdtrule.getTableXPath(); String tdttableurl = tdtrule.getTableURL(); String tdtxpathsub = tdtxpath.replaceAll("\\$1", extraparams.get(parameter[0])); extraparams.put(newfieldname, xpathlookup("ManagerTranslation.xml", tdtxpathsub)); } } /** * Stores the length of the specified string under the new fieldname specified by the * corresponding rule of the definition file. */ if (rulename.equals("LENGTH")) { assert extraparams.get(parameter[0]) != null : tdtfunction + " when " + parameter[0] + " is null"; if (extraparams.get(parameter[0]) != null) { extraparams.put(newfieldname, Integer.toString(extraparams.get(parameter[0]).length())); } } /** * Stores a GS1 check digit in the extraparams hashmap, keyed under the new fieldname specified * by the corresponding rule of the definition file. */ if (rulename.equals("GS1CHECKSUM")) { assert extraparams.get(parameter[0]) != null : tdtfunction + " when " + parameter[0] + " is null"; if (extraparams.get(parameter[0]) != null) { extraparams.put(newfieldname, gs1checksum(extraparams.get(parameter[0]))); } } /** * Obtains a substring of the string provided as the first parameter. If only a single second * parameter is specified, then this is considered as the start index and all characters from * the start index onwards are stored in the extraparams hashmap under the key named * 'newfieldname' in the corresponding rule of the definition file. If a second and third * parameter are specified, then the second parameter is the start index and the third is the * length of characters required. A substring consisting characters from the start index up to * the required length of characters is stored in the extraparams hashmap, keyed under the new * fieldname specified by the corresponding rule of the defintion file. */ if (rulename.equals("SUBSTR")) { assert extraparams.get(parameter[0]) != null : tdtfunction + " when " + parameter[0] + " is null"; if (parameter.length == 2) { if (extraparams.get(parameter[0]) != null) { int start = getIntValue(parameter[1], extraparams); if (start >= 0) { extraparams.put(newfieldname, extraparams.get(parameter[0]).substring(start)); } } } if (parameter.length == 3) { // need to check that this variation is correct - c.f. Perl substr assert extraparams.get(parameter[0]) != null : tdtfunction + " when " + parameter[0] + " is null"; if (extraparams.get(parameter[0]) != null) { int start = getIntValue(parameter[1], extraparams); int end = getIntValue(parameter[2], extraparams); if ((start >= 0) && (end >= 0)) { extraparams.put( newfieldname, extraparams.get(parameter[0]).substring(start, start + end)); } } } } /** * Concatenates specified string parameters together. Literal values must be enclosed within * single or double quotes or consist of unquoted digits. Other unquoted strings are considered * as fieldnames and the corresponding value from the extraparams hashmap are inserted. The * result of the concatenation (and substitution) of the strings is stored as a new entry in the * extraparams hashmap, keyed under the new fieldname specified by the rule. */ if (rulename.equals("CONCAT")) { StringBuilder buffer = new StringBuilder(); for (int p1 = 0; p1 < parameter.length; p1++) { Matcher matcher = Pattern.compile("\"(.*?)\"|'(.*?)'|[0-9]").matcher(parameter[p1]); if (matcher.matches()) { buffer.append(parameter[p1]); } else { assert extraparams.get(parameter[p1]) != null : tdtfunction + " when " + parameter[p1] + " is null"; if (extraparams.get(parameter[p1]) != null) { buffer.append(extraparams.get(parameter[p1])); } } } extraparams.put(newfieldname, buffer.toString()); } }
/** * Returns the Resource with identifier "id" * * @param id String * @return PDMResource */ public PDMOperation getOperation(String id) { return (PDMOperation) operations.get(id); }
/** * Returns the Resource with identifier "id" * * @param id String * @return PDMResource */ public PDMResource getResource(String id) { return (PDMResource) resources.get(id); }
/** * Returns the Data Element with identifier "id" * * @param id String * @return PDMDataElement */ public PDMDataElement getDataElement(String id) { return (PDMDataElement) dataElements.get(id); }