// Unsafe mechanics static long objectFieldOffset(sun.misc.Unsafe UNSAFE, String field, Class<?> klazz) { try { return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field)); } catch (NoSuchFieldException e) { // Convert Exception to corresponding Error NoSuchFieldError error = new NoSuchFieldError(field); error.initCause(e); throw error; } }
/** Node class for TransferStacks. */ static final class SNode { volatile SNode next; // next node in stack volatile SNode match; // the node matched to this volatile Thread waiter; // to control park/unpark Object item; // data; or null for REQUESTs int mode; // Note: item and mode fields don't need to be volatile // since they are always written before, and read after, // other volatile/atomic operations. SNode(Object item) { this.item = item; } boolean casNext(SNode cmp, SNode val) { return cmp == next && UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val); } /** * Tries to match node s to this node, if so, waking up thread. Fulfillers call tryMatch to * identify their waiters. Waiters block until they have been matched. * * @param s the node to match * @return true if successfully matched to s */ boolean tryMatch(SNode s) { if (match == null && UNSAFE.compareAndSwapObject(this, matchOffset, null, s)) { Thread w = waiter; if (w != null) { // waiters need at most one unpark waiter = null; LockSupport.unpark(w); } return true; } return match == s; } /** Tries to cancel a wait by matching node to itself. */ void tryCancel() { UNSAFE.compareAndSwapObject(this, matchOffset, null, this); } boolean isCancelled() { return match == this; } // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe(); private static final long nextOffset = objectFieldOffset(UNSAFE, "next", SNode.class); private static final long matchOffset = objectFieldOffset(UNSAFE, "match", SNode.class); }
/** Node class for TransferQueue. */ static final class QNode { volatile QNode next; // next node in queue volatile Object item; // CAS'ed to or from null volatile Thread waiter; // to control park/unpark final boolean isData; QNode(Object item, boolean isData) { this.item = item; this.isData = isData; } boolean casNext(QNode cmp, QNode val) { return next == cmp && UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val); } boolean casItem(Object cmp, Object val) { return item == cmp && UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val); } /** Tries to cancel by CAS'ing ref to this as item. */ void tryCancel(Object cmp) { UNSAFE.compareAndSwapObject(this, itemOffset, cmp, this); } boolean isCancelled() { return item == this; } /** * Returns true if this node is known to be off the queue because its next pointer has been * forgotten due to an advanceHead operation. */ boolean isOffList() { return next == this; } // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe(); private static final long nextOffset = objectFieldOffset(UNSAFE, "next", QNode.class); private static final long itemOffset = objectFieldOffset(UNSAFE, "item", QNode.class); }
/** Dual Queue */ static final class TransferQueue extends Transferer { /* * This extends Scherer-Scott dual queue algorithm, differing, * among other ways, by using modes within nodes rather than * marked pointers. The algorithm is a little simpler than * that for stacks because fulfillers do not need explicit * nodes, and matching is done by CAS'ing QNode.item field * from non-null to null (for put) or vice versa (for take). */ /** Node class for TransferQueue. */ static final class QNode { volatile QNode next; // next node in queue volatile Object item; // CAS'ed to or from null volatile Thread waiter; // to control park/unpark final boolean isData; QNode(Object item, boolean isData) { this.item = item; this.isData = isData; } boolean casNext(QNode cmp, QNode val) { return next == cmp && UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val); } boolean casItem(Object cmp, Object val) { return item == cmp && UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val); } /** Tries to cancel by CAS'ing ref to this as item. */ void tryCancel(Object cmp) { UNSAFE.compareAndSwapObject(this, itemOffset, cmp, this); } boolean isCancelled() { return item == this; } /** * Returns true if this node is known to be off the queue because its next pointer has been * forgotten due to an advanceHead operation. */ boolean isOffList() { return next == this; } // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe(); private static final long nextOffset = objectFieldOffset(UNSAFE, "next", QNode.class); private static final long itemOffset = objectFieldOffset(UNSAFE, "item", QNode.class); } /** Head of queue */ transient volatile QNode head; /** Tail of queue */ transient volatile QNode tail; /** * Reference to a cancelled node that might not yet have been unlinked from queue because it was * the last inserted node when it cancelled. */ transient volatile QNode cleanMe; TransferQueue() { QNode h = new QNode(null, false); // initialize to dummy node. head = h; tail = h; } /** * Tries to cas nh as new head; if successful, unlink old head's next node to avoid garbage * retention. */ void advanceHead(QNode h, QNode nh) { if (h == head && UNSAFE.compareAndSwapObject(this, headOffset, h, nh)) h.next = h; // forget old next } /** Tries to cas nt as new tail. */ void advanceTail(QNode t, QNode nt) { if (tail == t) UNSAFE.compareAndSwapObject(this, tailOffset, t, nt); } /** Tries to CAS cleanMe slot. */ boolean casCleanMe(QNode cmp, QNode val) { return cleanMe == cmp && UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val); } /** Puts or takes an item. */ Object transfer(Object e, boolean timed, long nanos) { /* Basic algorithm is to loop trying to take either of * two actions: * * 1. If queue apparently empty or holding same-mode nodes, * try to add node to queue of waiters, wait to be * fulfilled (or cancelled) and return matching item. * * 2. If queue apparently contains waiting items, and this * call is of complementary mode, try to fulfill by CAS'ing * item field of waiting node and dequeuing it, and then * returning matching item. * * In each case, along the way, check for and try to help * advance head and tail on behalf of other stalled/slow * threads. * * The loop starts off with a null check guarding against * seeing uninitialized head or tail values. This never * happens in current SynchronousQueue, but could if * callers held non-volatile/final ref to the * transferer. The check is here anyway because it places * null checks at top of loop, which is usually faster * than having them implicitly interspersed. */ QNode s = null; // constructed/reused as needed boolean isData = (e != null); for (; ; ) { QNode t = tail; QNode h = head; if (t == null || h == null) // saw uninitialized value continue; // spin if (h == t || t.isData == isData) { // empty or same-mode QNode tn = t.next; if (t != tail) // inconsistent read continue; if (tn != null) { // lagging tail advanceTail(t, tn); continue; } if (timed && nanos <= 0) // can't wait return null; if (s == null) s = new QNode(e, isData); if (!t.casNext(null, s)) // failed to link in continue; advanceTail(t, s); // swing tail and wait Object x = awaitFulfill(s, e, timed, nanos); if (x == s) { // wait was cancelled clean(t, s); return null; } if (!s.isOffList()) { // not already unlinked advanceHead(t, s); // unlink if head if (x != null) // and forget fields s.item = s; s.waiter = null; } return (x != null) ? x : e; } else { // complementary-mode QNode m = h.next; // node to fulfill if (t != tail || m == null || h != head) continue; // inconsistent read Object x = m.item; if (isData == (x != null) || // m already fulfilled x == m || // m cancelled !m.casItem(x, e)) { // lost CAS advanceHead(h, m); // dequeue and retry continue; } advanceHead(h, m); // successfully fulfilled LockSupport.unpark(m.waiter); return (x != null) ? x : e; } } } /** * Spins/blocks until node s is fulfilled. * * @param s the waiting node * @param e the comparison value for checking match * @param timed true if timed wait * @param nanos timeout value * @return matched item, or s if cancelled */ Object awaitFulfill(QNode s, Object e, boolean timed, long nanos) { /* Same idea as TransferStack.awaitFulfill */ long lastTime = timed ? System.nanoTime() : 0; Thread w = Thread.currentThread(); int spins = ((head.next == s) ? (timed ? maxTimedSpins : maxUntimedSpins) : 0); for (; ; ) { if (w.isInterrupted()) s.tryCancel(e); Object x = s.item; if (x != e) return x; if (timed) { long now = System.nanoTime(); nanos -= now - lastTime; lastTime = now; if (nanos <= 0) { s.tryCancel(e); continue; } } if (spins > 0) --spins; else if (s.waiter == null) s.waiter = w; else if (!timed) LockSupport.park(this); else if (nanos > spinForTimeoutThreshold) LockSupport.parkNanos(this, nanos); } } /** Gets rid of cancelled node s with original predecessor pred. */ void clean(QNode pred, QNode s) { s.waiter = null; // forget thread /* * At any given time, exactly one node on list cannot be * deleted -- the last inserted node. To accommodate this, * if we cannot delete s, we save its predecessor as * "cleanMe", deleting the previously saved version * first. At least one of node s or the node previously * saved can always be deleted, so this always terminates. */ while (pred.next == s) { // Return early if already unlinked QNode h = head; QNode hn = h.next; // Absorb cancelled first node as head if (hn != null && hn.isCancelled()) { advanceHead(h, hn); continue; } QNode t = tail; // Ensure consistent read for tail if (t == h) return; QNode tn = t.next; if (t != tail) continue; if (tn != null) { advanceTail(t, tn); continue; } if (s != t) { // If not tail, try to unsplice QNode sn = s.next; if (sn == s || pred.casNext(s, sn)) return; } QNode dp = cleanMe; if (dp != null) { // Try unlinking previous cancelled node QNode d = dp.next; QNode dn; if (d == null || // d is gone or d == dp || // d is off list or !d.isCancelled() || // d not cancelled or (d != t && // d not tail and (dn = d.next) != null && // has successor dn != d && // that is on list dp.casNext(d, dn))) // d unspliced casCleanMe(dp, null); if (dp == pred) return; // s is already saved node } else if (casCleanMe(null, pred)) return; // Postpone cleaning s } } // unsafe mechanics private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe(); private static final long headOffset = objectFieldOffset(UNSAFE, "head", TransferQueue.class); private static final long tailOffset = objectFieldOffset(UNSAFE, "tail", TransferQueue.class); private static final long cleanMeOffset = objectFieldOffset(UNSAFE, "cleanMe", TransferQueue.class); }
/** Dual stack */ static final class TransferStack extends Transferer { /* * This extends Scherer-Scott dual stack algorithm, differing, * among other ways, by using "covering" nodes rather than * bit-marked pointers: Fulfilling operations push on marker * nodes (with FULFILLING bit set in mode) to reserve a spot * to match a waiting node. */ /* Modes for SNodes, ORed together in node fields */ /** Node represents an unfulfilled consumer */ static final int REQUEST = 0; /** Node represents an unfulfilled producer */ static final int DATA = 1; /** Node is fulfilling another unfulfilled DATA or REQUEST */ static final int FULFILLING = 2; /** Return true if m has fulfilling bit set */ static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; } /** Node class for TransferStacks. */ static final class SNode { volatile SNode next; // next node in stack volatile SNode match; // the node matched to this volatile Thread waiter; // to control park/unpark Object item; // data; or null for REQUESTs int mode; // Note: item and mode fields don't need to be volatile // since they are always written before, and read after, // other volatile/atomic operations. SNode(Object item) { this.item = item; } boolean casNext(SNode cmp, SNode val) { return cmp == next && UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val); } /** * Tries to match node s to this node, if so, waking up thread. Fulfillers call tryMatch to * identify their waiters. Waiters block until they have been matched. * * @param s the node to match * @return true if successfully matched to s */ boolean tryMatch(SNode s) { if (match == null && UNSAFE.compareAndSwapObject(this, matchOffset, null, s)) { Thread w = waiter; if (w != null) { // waiters need at most one unpark waiter = null; LockSupport.unpark(w); } return true; } return match == s; } /** Tries to cancel a wait by matching node to itself. */ void tryCancel() { UNSAFE.compareAndSwapObject(this, matchOffset, null, this); } boolean isCancelled() { return match == this; } // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe(); private static final long nextOffset = objectFieldOffset(UNSAFE, "next", SNode.class); private static final long matchOffset = objectFieldOffset(UNSAFE, "match", SNode.class); } /** The head (top) of the stack */ volatile SNode head; boolean casHead(SNode h, SNode nh) { return h == head && UNSAFE.compareAndSwapObject(this, headOffset, h, nh); } /** * Creates or resets fields of a node. Called only from transfer where the node to push on stack * is lazily created and reused when possible to help reduce intervals between reads and CASes * of head and to avoid surges of garbage when CASes to push nodes fail due to contention. */ static SNode snode(SNode s, Object e, SNode next, int mode) { if (s == null) s = new SNode(e); s.mode = mode; s.next = next; return s; } /** Puts or takes an item. */ Object transfer(Object e, boolean timed, long nanos) { /* * Basic algorithm is to loop trying one of three actions: * * 1. If apparently empty or already containing nodes of same * mode, try to push node on stack and wait for a match, * returning it, or null if cancelled. * * 2. If apparently containing node of complementary mode, * try to push a fulfilling node on to stack, match * with corresponding waiting node, pop both from * stack, and return matched item. The matching or * unlinking might not actually be necessary because of * other threads performing action 3: * * 3. If top of stack already holds another fulfilling node, * help it out by doing its match and/or pop * operations, and then continue. The code for helping * is essentially the same as for fulfilling, except * that it doesn't return the item. */ SNode s = null; // constructed/reused as needed int mode = (e == null) ? REQUEST : DATA; for (; ; ) { SNode h = head; if (h == null || h.mode == mode) { // empty or same-mode if (timed && nanos <= 0) { // can't wait if (h != null && h.isCancelled()) casHead(h, h.next); // pop cancelled node else return null; } else if (casHead(h, s = snode(s, e, h, mode))) { SNode m = awaitFulfill(s, timed, nanos); if (m == s) { // wait was cancelled clean(s); return null; } if ((h = head) != null && h.next == s) casHead(h, s.next); // help s's fulfiller return (mode == REQUEST) ? m.item : s.item; } } else if (!isFulfilling(h.mode)) { // try to fulfill if (h.isCancelled()) // already cancelled casHead(h, h.next); // pop and retry else if (casHead(h, s = snode(s, e, h, FULFILLING | mode))) { for (; ; ) { // loop until matched or waiters disappear SNode m = s.next; // m is s's match if (m == null) { // all waiters are gone casHead(s, null); // pop fulfill node s = null; // use new node next time break; // restart main loop } SNode mn = m.next; if (m.tryMatch(s)) { casHead(s, mn); // pop both s and m return (mode == REQUEST) ? m.item : s.item; } else // lost match s.casNext(m, mn); // help unlink } } } else { // help a fulfiller SNode m = h.next; // m is h's match if (m == null) // waiter is gone casHead(h, null); // pop fulfilling node else { SNode mn = m.next; if (m.tryMatch(h)) // help match casHead(h, mn); // pop both h and m else // lost match h.casNext(m, mn); // help unlink } } } } /** * Spins/blocks until node s is matched by a fulfill operation. * * @param s the waiting node * @param timed true if timed wait * @param nanos timeout value * @return matched node, or s if cancelled */ SNode awaitFulfill(SNode s, boolean timed, long nanos) { /* * When a node/thread is about to block, it sets its waiter * field and then rechecks state at least one more time * before actually parking, thus covering race vs * fulfiller noticing that waiter is non-null so should be * woken. * * When invoked by nodes that appear at the point of call * to be at the head of the stack, calls to park are * preceded by spins to avoid blocking when producers and * consumers are arriving very close in time. This can * happen enough to bother only on multiprocessors. * * The order of checks for returning out of main loop * reflects fact that interrupts have precedence over * normal returns, which have precedence over * timeouts. (So, on timeout, one last check for match is * done before giving up.) Except that calls from untimed * SynchronousQueue.{poll/offer} don't check interrupts * and don't wait at all, so are trapped in transfer * method rather than calling awaitFulfill. */ long lastTime = timed ? System.nanoTime() : 0; Thread w = Thread.currentThread(); SNode h = head; int spins = (shouldSpin(s) ? (timed ? maxTimedSpins : maxUntimedSpins) : 0); for (; ; ) { if (w.isInterrupted()) s.tryCancel(); SNode m = s.match; if (m != null) return m; if (timed) { long now = System.nanoTime(); nanos -= now - lastTime; lastTime = now; if (nanos <= 0) { s.tryCancel(); continue; } } if (spins > 0) spins = shouldSpin(s) ? (spins - 1) : 0; else if (s.waiter == null) s.waiter = w; // establish waiter so can park next iter else if (!timed) LockSupport.park(this); else if (nanos > spinForTimeoutThreshold) LockSupport.parkNanos(this, nanos); } } /** Returns true if node s is at head or there is an active fulfiller. */ boolean shouldSpin(SNode s) { SNode h = head; return (h == s || h == null || isFulfilling(h.mode)); } /** Unlinks s from the stack. */ void clean(SNode s) { s.item = null; // forget item s.waiter = null; // forget thread /* * At worst we may need to traverse entire stack to unlink * s. If there are multiple concurrent calls to clean, we * might not see s if another thread has already removed * it. But we can stop when we see any node known to * follow s. We use s.next unless it too is cancelled, in * which case we try the node one past. We don't check any * further because we don't want to doubly traverse just to * find sentinel. */ SNode past = s.next; if (past != null && past.isCancelled()) past = past.next; // Absorb cancelled nodes at head SNode p; while ((p = head) != null && p != past && p.isCancelled()) casHead(p, p.next); // Unsplice embedded nodes while (p != null && p != past) { SNode n = p.next; if (n != null && n.isCancelled()) p.casNext(n, n.next); else p = n; } } // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe(); private static final long headOffset = objectFieldOffset(UNSAFE, "head", TransferStack.class); }