/** * Returns a composed {@link BiIntToFloatFunction} that first applies the {@code before} functions * to its input, and then applies this function to the result. If evaluation of either operation * throws an exception, it is relayed to the caller of the composed operation. This method is just * convenience, to provide the ability to execute an operation which accepts {@code int} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @return A composed {@code BiIntToFloatFunction} that first applies the {@code before} functions * to its input, and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case * this is {@code int}. */ @Nonnull default BiIntToFloatFunction composeFromInt( @Nonnull final IntFunction<? extends T> before1, @Nonnull final IntToDoubleFunction before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsFloat(before1.apply(value1), before2.applyAsDouble(value2)); }
public static <T> T[] apply(Class<T> type, int count, IntFunction<T> generator) { T[] array = (T[]) Array.newInstance(type, count); for (int i = 0; i < count; i++) { array[i] = generator.apply(i); } return array; }
/** * Returns a composed {@link BiIntPredicate} that first applies the {@code before} functions to * its input, and then applies this predicate to the result. If evaluation of either operation * throws an exception, it is relayed to the caller of the composed operation. This method is just * convenience, to provide the ability to execute an operation which accepts {@code int} input, * before this primitive predicate is executed. * * @param before1 The first function to apply before this predicate is applied * @param before2 The second function to apply before this predicate is applied * @return A composed {@code BiIntPredicate} that first applies the {@code before} functions to * its input, and then applies this predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case * this is {@code int}. */ @Nonnull default BiIntPredicate composeFromInt( @Nonnull final IntFunction<? extends T> before1, @Nonnull final IntToCharFunction before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> test(before1.apply(value1), before2.applyAsChar(value2)); }
private static long timer(int n, IntFunction<Long> aMethod) { long startTime = System.nanoTime(); long returnLong = aMethod.apply(n); long duration = System.nanoTime() - startTime; System.out.print("Elapsed duration: " + duration + " (ns). Result = "); return returnLong; }
/** * Returns a composed {@link TriIntConsumer} that first applies the {@code before} functions to * its input, and then applies this consumer to the result. If evaluation of either operation * throws an exception, it is relayed to the caller of the composed operation. This method is just * convenience, to provide the ability to execute an operation which accepts {@code int} input, * before this primitive consumer is executed. * * @param before1 The first function to apply before this consumer is applied * @param before2 The second operator to apply before this consumer is applied * @param before3 The third operator to apply before this consumer is applied * @return A composed {@code TriIntConsumer} that first applies the {@code before} functions to * its input, and then applies this consumer to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case * this is {@code int}. */ @Nonnull default TriIntConsumer composeFromInt( @Nonnull final IntFunction<? extends T> before1, @Nonnull final IntUnaryOperator before2, @Nonnull final IntUnaryOperator before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> accept(before1.apply(value1), before2.applyAsInt(value2), before3.applyAsInt(value3)); }
/** * Returns a composed {@link TriIntToCharFunction} that first applies the {@code before} functions * to its input, and then applies this function to the result. If evaluation of either operation * throws an exception, it is relayed to the caller of the composed operation. This method is just * convenience, to provide the ability to execute an operation which accepts {@code int} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriIntToCharFunction} that first applies the {@code before} functions * to its input, and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case * this is {@code int}. */ @Nonnull default TriIntToCharFunction composeFromInt( @Nonnull final IntFunction<? extends T> before1, @Nonnull final IntToByteFunction before2, @Nonnull final IntToByteFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsChar( before1.apply(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); }
private <E extends RuntimeException> void assertIntFunction( IntFunction<Object> test, Class<E> type) { assertNotNull(test); try { test.apply(0); fail(); } catch (RuntimeException e) { assertException(type, e, "0"); } try { IntStream.of(1, 2, 3).mapToObj(test); } catch (RuntimeException e) { assertException(type, e, "1"); } }
public static <E, C extends Collection<E>> ArrayBuilderFactory<E, C> collection( IntFunction<C> collectionFactory) { return length -> { C collection = collectionFactory.apply(length); return new ArrayBuilderFactory.Builder<E, C>() { @Override public void add(@Nullable E element) { collection.add(element); } @Override public C build() { return collection; } }; }; }
public static <E> ArrayBuilderFactory<E, E[]> array(IntFunction<E[]> arrayFactory) { return length -> { E[] array = arrayFactory.apply(length); return new ArrayBuilderFactory.Builder<E, E[]>() { private int i = 0; @Override public void add(@Nullable E element) { array[i++] = element; } @Override public E[] build() { return array; } }; }; }
/** * Obtains an instance with entries filled using a function. * * <p>The function is passed the row index, returning the column values. * * @param rows the number of rows * @param columns the number of columns * @param valuesFunction the function used to populate the values * @return a matrix initialized using the function */ public static DoubleMatrix ofArrays(int rows, int columns, IntFunction<double[]> valuesFunction) { if (rows == 0 || columns == 0) { return EMPTY; } double[][] array = new double[rows][columns]; for (int i = 0; i < array.length; i++) { double[] values = valuesFunction.apply(i); if (values.length != columns) { throw new IllegalArgumentException( Messages.format( "Function returned array of incorrect length {}, expected {}", values.length, columns)); } array[i] = values.clone(); } return new DoubleMatrix(array, rows, columns); }