コード例 #1
0
ファイル: Evolution.java プロジェクト: njustesen/hero-ai
  public static boolean xor_epoch(Population pop, int generation, String filename) {

    boolean esito = false;
    // Evaluate each organism if exist the winner.........
    boolean win = false;

    Iterator itr_organism;
    itr_organism = pop.organisms.iterator();
    while (itr_organism.hasNext()) {
      // point to organism
      Organism _organism = ((Organism) itr_organism.next());
      // evaluate
      esito = xor_evaluate(_organism);
      // if is a winner , store a flag
      if (esito) win = true;
    }

    // compute average and max fitness for each species
    Iterator itr_specie;
    itr_specie = pop.species.iterator();
    while (itr_specie.hasNext()) {
      Species _specie = ((Species) itr_specie.next());
      _specie.compute_average_fitness();
      _specie.compute_max_fitness();
    }
    // Only print to file every print_every generations

    if (win || (generation % Neat.p_print_every) == 0)
      pop.print_to_file_by_species("c:\\jneat\\dati\\" + filename);

    // if exist a winner write to file
    if (win) {
      int cnt = 0;
      itr_organism = pop.getOrganisms().iterator();
      while (itr_organism.hasNext()) {
        Organism _organism = ((Organism) itr_organism.next());
        if (_organism.winner) {
          System.out.print("\n   -WINNER IS #" + _organism.genome.genome_id);
          _organism.getGenome().print_to_filename("c:\\jneat\\dati\\xor_win" + cnt);
          cnt++;
        }
      }
    }
    // wait an epoch and make a reproductionof the best species
    pop.epoch(generation);
    if (win) {
      System.out.print("\t\t** I HAVE FOUND A CHAMPION **");
      return true;
    } else return false;
  }
コード例 #2
0
ファイル: Evolution.java プロジェクト: njustesen/hero-ai
  /** Insert the method's description here. Creation date: (16/01/2002 9.53.37) */
  public static boolean xor_evaluate(Organism organism) {

    Network _net = null;
    boolean success = false;
    double errorsum = 0.0;
    double[] out = new double[4]; // The four outputs

    //   int numnodes = 0;
    int net_depth = 0; // The max depth of the network to be activated
    int count = 0;

    // The four possible input combinations to xor
    // The first number is for biasing

    double in[][] = {{1.0, 0.0, 0.0}, {1.0, 0.0, 1.0}, {1.0, 1.0, 0.0}, {1.0, 1.0, 1.0}};

    _net = organism.net;
    //   numnodes = organism.genome.nodes.size();

    net_depth = _net.max_depth();

    // for each example , 'count', propagate signal .... and compute results
    for (count = 0; count <= 3; count++) {

      // first activation from sensor to first next levelof neurons
      _net.load_sensors(in[count]);
      success = _net.activate();

      // next activation while last level is reached !
      // use depth to ensure relaxation

      for (int relax = 0; relax <= net_depth; relax++) success = _net.activate();

      // ok : the propagation is completed : repeat until all examples are presented
      out[count] = ((NNode) _net.getOutputs().firstElement()).getActivation();
      _net.flush();
    }

    // control the result
    if (success) {
      errorsum =
          (double)
              (Math.abs(out[0])
                  + Math.abs(1.0 - out[1])
                  + Math.abs(1.0 - out[2])
                  + Math.abs(out[3]));
      organism.setFitness(Math.pow((4.0 - errorsum), 2));
      organism.setError(errorsum);
    } else {
      errorsum = 999.0;
      organism.setFitness(0.001);
      organism.setError(errorsum);
    }
    String mask03 = "0.000";
    DecimalFormat fmt03 = new DecimalFormat(mask03);

    if ((out[0] < 0.5) && (out[1] >= 0.5) && (out[2] >= 0.5) && (out[3] < 0.5)) {
      organism.setWinner(true);
      return true;
    } else {
      organism.setWinner(false);
      return false;
    }
  }