コード例 #1
0
  public TopicScores getDistanceFromUniform() {
    int[] tokensPerTopic = model.tokensPerTopic;

    TopicScores scores = new TopicScores("uniform_dist", numTopics, numTopWords);
    scores.wordScoresDefined = true;

    int numTypes = alphabet.size();

    for (int topic = 0; topic < numTopics; topic++) {

      double topicScore = 0.0;
      int position = 0;
      TreeSet<IDSorter> sortedWords = topicSortedWords.get(topic);

      for (IDSorter info : sortedWords) {
        int type = info.getID();
        double count = info.getWeight();

        double score =
            (count / tokensPerTopic[topic]) * Math.log((count * numTypes) / tokensPerTopic[topic]);

        if (position < numTopWords) {
          scores.setTopicWordScore(topic, position, score);
        }

        topicScore += score;
        position++;
      }

      scores.setTopicScore(topic, topicScore);
    }

    return scores;
  }
コード例 #2
0
  public TopicModelDiagnostics(ParallelTopicModel model, int numTopWords) {
    numTopics = model.getNumTopics();
    this.numTopWords = numTopWords;

    this.model = model;

    alphabet = model.getAlphabet();
    topicSortedWords = model.getSortedWords();

    topicTopWords = new String[numTopics][numTopWords];

    numRank1Documents = new int[numTopics];
    numNonZeroDocuments = new int[numTopics];
    numDocumentsAtProportions = new int[numTopics][DEFAULT_DOC_PROPORTIONS.length];
    sumCountTimesLogCount = new double[numTopics];

    diagnostics = new ArrayList<TopicScores>();

    for (int topic = 0; topic < numTopics; topic++) {

      int position = 0;
      TreeSet<IDSorter> sortedWords = topicSortedWords.get(topic);

      // How many words should we report? Some topics may have fewer than
      //  the default number of words with non-zero weight.
      int limit = numTopWords;
      if (sortedWords.size() < numTopWords) {
        limit = sortedWords.size();
      }

      Iterator<IDSorter> iterator = sortedWords.iterator();
      for (int i = 0; i < limit; i++) {
        IDSorter info = iterator.next();
        topicTopWords[topic][i] = (String) alphabet.lookupObject(info.getID());
      }
    }

    collectDocumentStatistics();

    diagnostics.add(getTokensPerTopic(model.tokensPerTopic));
    diagnostics.add(getDocumentEntropy(model.tokensPerTopic));
    diagnostics.add(getWordLengthScores());
    diagnostics.add(getCoherence());
    diagnostics.add(getDistanceFromUniform());
    diagnostics.add(getDistanceFromCorpus());
    diagnostics.add(getEffectiveNumberOfWords());
    diagnostics.add(getTokenDocumentDiscrepancies());
    diagnostics.add(getRank1Percent());
    diagnostics.add(getDocumentPercentRatio(FIFTY_PERCENT_INDEX, TWO_PERCENT_INDEX));
    diagnostics.add(getDocumentPercent(5));
    diagnostics.add(getExclusivity());
  }
コード例 #3
0
  public TopicScores getEffectiveNumberOfWords() {
    int[] tokensPerTopic = model.tokensPerTopic;

    TopicScores scores = new TopicScores("eff_num_words", numTopics, numTopWords);

    int numTypes = alphabet.size();

    for (int topic = 0; topic < numTopics; topic++) {

      double sumSquaredProbabilities = 0.0;
      TreeSet<IDSorter> sortedWords = topicSortedWords.get(topic);

      for (IDSorter info : sortedWords) {
        int type = info.getID();
        double probability = info.getWeight() / tokensPerTopic[topic];

        sumSquaredProbabilities += probability * probability;
      }

      scores.setTopicScore(topic, 1.0 / sumSquaredProbabilities);
    }

    return scores;
  }
コード例 #4
0
  public void collectDocumentStatistics() {

    topicCodocumentMatrices = new int[numTopics][numTopWords][numTopWords];
    wordTypeCounts = new int[alphabet.size()];
    numTokens = 0;

    // This is an array of hash sets containing the words-of-interest for each topic,
    //  used for checking if the word at some position is one of those words.
    IntHashSet[] topicTopWordIndices = new IntHashSet[numTopics];

    // The same as the topic top words, but with int indices instead of strings,
    //  used for iterating over positions.
    int[][] topicWordIndicesInOrder = new int[numTopics][numTopWords];

    // This is an array of hash sets that will hold the words-of-interest present in a document,
    //  which will be cleared after every document.
    IntHashSet[] docTopicWordIndices = new IntHashSet[numTopics];

    int numDocs = model.getData().size();

    // The count of each topic, again cleared after every document.
    int[] topicCounts = new int[numTopics];

    for (int topic = 0; topic < numTopics; topic++) {
      IntHashSet wordIndices = new IntHashSet();

      for (int i = 0; i < numTopWords; i++) {
        if (topicTopWords[topic][i] != null) {
          int type = alphabet.lookupIndex(topicTopWords[topic][i]);
          topicWordIndicesInOrder[topic][i] = type;
          wordIndices.add(type);
        }
      }

      topicTopWordIndices[topic] = wordIndices;
      docTopicWordIndices[topic] = new IntHashSet();
    }

    int doc = 0;

    for (TopicAssignment document : model.getData()) {

      FeatureSequence tokens = (FeatureSequence) document.instance.getData();
      FeatureSequence topics = (FeatureSequence) document.topicSequence;

      for (int position = 0; position < tokens.size(); position++) {
        int type = tokens.getIndexAtPosition(position);
        int topic = topics.getIndexAtPosition(position);

        numTokens++;
        wordTypeCounts[type]++;

        topicCounts[topic]++;

        if (topicTopWordIndices[topic].contains(type)) {
          docTopicWordIndices[topic].add(type);
        }
      }

      int docLength = tokens.size();

      if (docLength > 0) {
        int maxTopic = -1;
        int maxCount = -1;

        for (int topic = 0; topic < numTopics; topic++) {

          if (topicCounts[topic] > 0) {
            numNonZeroDocuments[topic]++;

            if (topicCounts[topic] > maxCount) {
              maxTopic = topic;
              maxCount = topicCounts[topic];
            }

            sumCountTimesLogCount[topic] += topicCounts[topic] * Math.log(topicCounts[topic]);

            double proportion =
                (model.alpha[topic] + topicCounts[topic]) / (model.alphaSum + docLength);
            for (int i = 0; i < DEFAULT_DOC_PROPORTIONS.length; i++) {
              if (proportion < DEFAULT_DOC_PROPORTIONS[i]) {
                break;
              }
              numDocumentsAtProportions[topic][i]++;
            }

            IntHashSet supportedWords = docTopicWordIndices[topic];
            int[] indices = topicWordIndicesInOrder[topic];

            for (int i = 0; i < numTopWords; i++) {
              if (supportedWords.contains(indices[i])) {
                for (int j = i; j < numTopWords; j++) {
                  if (i == j) {
                    // Diagonals are total number of documents with word W in topic T
                    topicCodocumentMatrices[topic][i][i]++;
                  } else if (supportedWords.contains(indices[j])) {
                    topicCodocumentMatrices[topic][i][j]++;
                    topicCodocumentMatrices[topic][j][i]++;
                  }
                }
              }
            }

            docTopicWordIndices[topic].clear();
            topicCounts[topic] = 0;
          }
        }

        if (maxTopic > -1) {
          numRank1Documents[maxTopic]++;
        }
      }

      doc++;
    }
  }