/** * Create a default object of the given type. Prefers constructors with as few arguments as * possible. Creates an empty proxy for interfaces. * * @param type type to instantiate * @return default instance * @throws Exception if the default instance could not be created */ private static Object instantiateType(Class<?> type) throws Exception { if (type.isPrimitive()) return Defaults.defaultValue(type); else if (type == Void.class) return null; else if (type.isArray()) return Array.newInstance(type, 0); else if (type.isInterface()) return Proxy.newProxyInstance( type.getClassLoader(), new Class[] {type}, new InvocationHandler() { @Override public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { return null; } }); // Take a constructor with as few params as possible Constructor constructor = type.getDeclaredConstructors()[0]; for (Constructor<?> c : type.getDeclaredConstructors()) { if (c.getParameterTypes().length < constructor.getParameterTypes().length) constructor = c; } Object[] params = new Object[constructor.getParameterTypes().length]; for (int i = 0; i < constructor.getParameterTypes().length; i++) { params[i] = instantiateType(constructor.getParameterTypes()[i]); } return constructor.newInstance(params); }
/** * Sets up the mocks defined in the given mock class. * * <p>If the type {@linkplain MockClass#realClass referred to} by the mock class is actually an * interface, then a {@linkplain #newEmptyProxy(ClassLoader, Class) new empty proxy} is created. * * @param mockClassOrInstance the mock class itself (given by its {@code Class} literal), or an * instance of the mock class * @return the new proxy instance created for the mocked interface, or {@code null} otherwise * @throws IllegalArgumentException if a given mock class fails to specify the corresponding real * class using the {@code @MockClass(realClass = ...)} annotation; or if a mock class defines * a mock method for which no corresponding real method or constructor exists in the real * class; or if the real method matching a mock method is {@code abstract} * @see #setUpMock(Class, Object) * @see #setUpMocks(Object...) * @see <a * href="http://code.google.com/p/jmockit/source/browse/trunk/main/test/mockit/MockAnnotationsTest.java#696"> * Example</a> */ public static <T> T setUpMock(Object mockClassOrInstance) { Class<?> mockClass; Object mock; if (mockClassOrInstance instanceof Class<?>) { mockClass = (Class<?>) mockClassOrInstance; mock = null; } else { mockClass = mockClassOrInstance.getClass(); mock = mockClassOrInstance; } MockClassSetup setup = new MockClassSetup(mock, mockClass); Class<?> realClass = setup.getRealClass(); T proxy = null; if (realClass.isInterface()) { //noinspection unchecked proxy = (T) newEmptyProxy(mockClass.getClassLoader(), realClass); setup.setRealClass(proxy.getClass()); } setup.redefineMethods(); return proxy; }
@Nullable public InstanceFactory findInstanceFactory(@Nonnull Type mockedType) { InstanceFactory instanceFactory = mockedTypesAndInstances.get(mockedType); if (instanceFactory != null) { return instanceFactory; } Class<?> mockedClass = getClassType(mockedType); //noinspection ReuseOfLocalVariable instanceFactory = mockedTypesAndInstances.get(mockedClass); if (instanceFactory != null) { return instanceFactory; } boolean abstractType = mockedClass.isInterface() || isAbstract(mockedClass.getModifiers()); for (Entry<Type, InstanceFactory> entry : mockedTypesAndInstances.entrySet()) { Type registeredMockedType = entry.getKey(); Class<?> registeredMockedClass = getClassType(registeredMockedType); if (abstractType) { registeredMockedClass = getMockedClassOrInterfaceType(registeredMockedClass); } if (mockedClass.isAssignableFrom(registeredMockedClass)) { instanceFactory = entry.getValue(); break; } } return instanceFactory; }
public static void validatePassivating(Class<?> cl, Bean<?> bean, String typeName) { Class<?> beanClass = bean.getBeanClass(); if (!Serializable.class.isAssignableFrom(beanClass) && false) { ConfigException exn = new ConfigException( L.l( "{0}: {1} is an invalid {2} because it is not serializable.", cl.getName(), bean, typeName)); throw exn; // InjectManager.create().addDefinitionError(exn); } for (InjectionPoint ip : bean.getInjectionPoints()) { if (ip.isTransient() || ip.isDelegate()) continue; Class<?> type = getRawClass(ip.getType()); if (type.isInterface()) continue; if (!Serializable.class.isAssignableFrom(type)) { ConfigException exn = new ConfigException( L.l( "{0}: {1} is an invalid {4} because its injection point '{2}' of type {3} is not serializable.", cl.getName(), bean, ip.getMember().getName(), ip.getType(), typeName)); throw exn; } } }
public SAMSignature(Class<SAM> samType, Class<?>[] genericTypes) { this.samType = samType; if (!samType.isInterface()) { throw new LambdaException("SAM class [%s] is required to be an interface", samType.getName()); } buildGenericTypeVariables(genericTypes); findSamMethod(); BuildSignature(); }
public static void premain(String args, Instrumentation inst) throws Exception { try { String[] agentArgs; if (args == null) agentArgs = new String[] {""}; else agentArgs = args.split(","); if (!agentArgs[0].equals("instrumenting")) jarFileName = agentArgs[0]; BaseClassTransformer rct = null; rct = new BaseClassTransformer(); if (agentArgs[0].equals("instrumenting")) { initVMClasses = new HashSet<String>(); for (Class<?> c : inst.getAllLoadedClasses()) { ((Set<String>) initVMClasses).add(c.getName()); } } if (!agentArgs[0].equals("instrumenting")) { inst.addTransformer(rct); Tracer.setLocals(new CounterThreadLocal()); Tracer.overrideAll(true); for (Class<?> c : inst.getAllLoadedClasses()) { try { if (c.isInterface()) continue; if (c.isArray()) continue; byte[] bytes = rct.getBytes(c.getName()); if (bytes == null) { continue; } inst.redefineClasses(new ClassDefinition[] {new ClassDefinition(c, bytes)}); } catch (Throwable e) { synchronized (System.err) { System.err.println("" + c + " failed..."); e.printStackTrace(); } } } Runtime.getRuntime() .addShutdownHook( new Thread() { public void run() { Tracer.mark(); try { PrintStream ps = new PrintStream("bailout.txt"); ps.println("Bailouts: " + Tracer.getBailoutCount()); ps.close(); } catch (Exception e) { } Tracer.unmark(); } }); if ("true".equals(System.getProperty("bci.observerOn"))) Tracer.overrideAll(false); } } catch (Exception e) { e.printStackTrace(); } }
static JavaMembers lookupClass( Scriptable scope, Class<?> dynamicType, Class<?> staticType, boolean includeProtected) { JavaMembers members; scope = ScriptableObject.getTopLevelScope(scope); ClassCache cache = ClassCache.get(scope); Map<Class<?>, JavaMembers> ct = cache.getClassCacheMap(); Class<?> cl = dynamicType; for (; ; ) { members = ct.get(cl); if (members != null) { return members; } try { members = new JavaMembers(scope, cl, includeProtected); break; } catch (SecurityException e) { // Reflection may fail for objects that are in a restricted // access package (e.g. sun.*). If we get a security // exception, try again with the static type if it is interface. // Otherwise, try superclass if (staticType != null && staticType.isInterface()) { cl = staticType; staticType = null; // try staticType only once } else { Class<?> parent = cl.getSuperclass(); if (parent == null) { if (cl.isInterface()) { // last resort after failed staticType interface parent = ScriptRuntime.ObjectClass; } else { throw e; } } cl = parent; } } } if (cache.isCachingEnabled()) ct.put(cl, members); return members; }
private T newContextObject() { try { if (type.isInterface()) { return (T) Classes.newDynamicProxy(type); } else { return (T) type.newInstance(); } } catch (Exception anExc) { throw new XmlReadingException(anExc); } }
public <T> T getInterface(Object thiz, Class<T> iface) throws ScriptException { if (iface == null || !iface.isInterface()) { throw new IllegalArgumentException("interface Class expected"); } AccessControlContext accCtxt = AccessController.getContext(); return iface.cast( Proxy.newProxyInstance( iface.getClassLoader(), new Class[] {iface}, new InterfaceImplementorInvocationHandler(thiz, accCtxt))); }
public static PropertyDescriptor[] getPropertyDescriptors(Class<?> objectClass) { // If the class is an interface, use custom method to get all prop descriptors in the // inheritance hierarchy. // PropertyUtils.getPropertyDescriptors() does not work correctly for interface inheritance. It // finds props in the // actual interface ok, but does not find props in the inheritance hierarchy. if (objectClass.isInterface()) { return getInterfacePropertyDescriptors(objectClass); } else { return BeanUtils.getPropertyDescriptors(objectClass); } }
TestedField( @Nonnull InjectionState injectionState, @Nonnull Field field, @Nonnull Tested metadata) { this.injectionState = injectionState; testedField = field; this.metadata = metadata; fullInjection = metadata.fullyInitialized() ? new FullInjection(injectionState) : null; Class<?> fieldType = field.getType(); if (fieldType.isInterface()) { testedObjectCreation = null; } else { testedObjectCreation = new TestedObjectCreation(injectionState, fullInjection, field); injectionState.lifecycleMethods.findLifecycleMethods(fieldType); } }
private static void checkTypeAndAnnotations(Binder binder, Class<?> type) { if (!type.isInterface()) { binder.addError("Type %s must be an interface", type); } if (!Finders.class.isAssignableFrom(type)) { binder.addError("Type %s must be annotated with %s", type, Finders.class); } for (Method method : type.getMethods()) { if (!method.isAnnotationPresent(Finder.class)) { binder.addError("Method %s must be annotated with %s", method, Finder.class); } if (method.getReturnType() != Iterator.class) { binder.addError("Method %s must return an %s", method, Iterator.class); } else if (!resultType(method).isInterface()) { binder.addError("%s must be an interface on method %s", resultType(method), method); } } }
static Object js_createAdpter(Context cx, Scriptable scope, Object[] args) { int N = args.length; if (N == 0) { throw ScriptRuntime.typeError0("msg.adapter.zero.args"); } Class superClass = null; Class[] intfs = new Class[N - 1]; int interfaceCount = 0; for (int i = 0; i != N - 1; ++i) { Object arg = args[i]; if (!(arg instanceof NativeJavaClass)) { throw ScriptRuntime.typeError2( "msg.not.java.class.arg", String.valueOf(i), ScriptRuntime.toString(arg)); } Class c = ((NativeJavaClass) arg).getClassObject(); if (!c.isInterface()) { if (superClass != null) { throw ScriptRuntime.typeError2("msg.only.one.super", superClass.getName(), c.getName()); } superClass = c; } else { intfs[interfaceCount++] = c; } } if (superClass == null) superClass = ScriptRuntime.ObjectClass; Class[] interfaces = new Class[interfaceCount]; System.arraycopy(intfs, 0, interfaces, 0, interfaceCount); Scriptable obj = ScriptRuntime.toObject(cx, scope, args[N - 1]); Class adapterClass = getAdapterClass(scope, superClass, interfaces, obj); Class[] ctorParms = {ScriptRuntime.ContextFactoryClass, ScriptRuntime.ScriptableClass}; Object[] ctorArgs = {cx.getFactory(), obj}; try { Object adapter = adapterClass.getConstructor(ctorParms).newInstance(ctorArgs); return getAdapterSelf(adapterClass, adapter); } catch (Exception ex) { throw Context.throwAsScriptRuntimeEx(ex); } }
/** * Return true if the type is not abstract and not an interface, and has a constructor annotated * with {@link Inject} or its only constructor is the default constructor. * * @param type A class type * @return True if the class type is instantiable */ public static boolean isInstantiable(Class<?> type) { if (!Modifier.isAbstract(type.getModifiers()) && !type.isInterface()) { // first check for a constructor annotated with @Inject, // - this doesn't care how many we'll let the injector complain // if there are more than one for (Constructor<?> c : type.getDeclaredConstructors()) { if (c.getAnnotation(Inject.class) != null) { return true; } } // check if we only have the public default constructor if (type.getConstructors().length == 1 && type.getConstructors()[0].getParameterTypes().length == 0) { return true; } } // no constructor available return false; }
/** * Return the type distance between the child and parent types. The child type must be a subtype * of the parent. The type distance between a class and itself is 0; the distance from a class to * one of its immediate supertypes (superclass or a directly implemented interface) is 1; deeper * distances are computed recursively. * * @param child The child type * @param parent The parent type * @return The type distance * @throws IllegalArgumentException if {@code child} is not a subtype of {@code parent}. */ public static int getTypeDistance(@Nonnull Class<?> child, @Nonnull Class<?> parent) { Preconditions.notNull("child class", child); Preconditions.notNull("parent class", parent); if (child.equals(parent)) { // fast-path same-class tests return 0; } else if (!parent.isAssignableFrom(child)) { // if child does not extend from the parent, return -1 throw new IllegalArgumentException("child not a subclass of parent"); } else if (!parent.isInterface()) { // if the parent is not an interface, we only need to follower superclasses int distance = 0; Class<?> cur = child; while (!cur.equals(parent)) { distance++; cur = cur.getSuperclass(); } return distance; } else { // worst case, recursively compute the type // recursion is safe, as types aren't too deep except in crazy-land int minDepth = Integer.MAX_VALUE; Class<?> sup = child.getSuperclass(); if (sup != null && parent.isAssignableFrom(sup)) { minDepth = getTypeDistance(sup, parent); } for (Class<?> iface : child.getInterfaces()) { if (parent.isAssignableFrom(iface)) { int d = getTypeDistance(iface, parent); if (d < minDepth) { minDepth = d; } } } // minDepth now holds the depth of the superclass with shallowest depth return minDepth + 1; } }
// Other notes to implementors: // <p> // No stable mapping is promised between the single-method interface and // the implementation class C. Over time, several implementation // classes might be used for the same type. // <p> // If the implementation is able // to prove that a wrapper of the required type // has already been created for a given // method handle, or for another method handle with the // same behavior, the implementation may return that wrapper in place of // a new wrapper. // <p> // This method is designed to apply to common use cases // where a single method handle must interoperate with // an interface that implements a function-like // API. Additional variations, such as single-abstract-method classes with // private constructors, or interfaces with multiple but related // entry points, must be covered by hand-written or automatically // generated adapter classes. // public static <T> T asInterfaceInstance(final Class<T> intfc, final MethodHandle target) { if (!intfc.isInterface() || !Modifier.isPublic(intfc.getModifiers())) throw new IllegalArgumentException("not a public interface: " + intfc.getName()); final Method[] methods = getSingleNameMethods(intfc); if (methods == null) throw new IllegalArgumentException("not a single-method interface: " + intfc.getName()); final MethodHandle[] vaTargets = new MethodHandle[methods.length]; for (int i = 0; i < methods.length; i++) { Method sm = methods[i]; MethodType smMT = MethodType.methodType(sm.getReturnType(), sm.getParameterTypes()); MethodHandle checkTarget = target.asType(smMT); // make throw WMT checkTarget = checkTarget.asType(checkTarget.type().changeReturnType(Object.class)); vaTargets[i] = checkTarget.asSpreader(Object[].class, smMT.parameterCount()); } return intfc.cast( Proxy.newProxyInstance( intfc.getClassLoader(), new Class[] {intfc, WrapperInstance.class}, new InvocationHandler() { private Object getArg(String name) { if ((Object) name == "getWrapperInstanceTarget") return target; if ((Object) name == "getWrapperInstanceType") return intfc; throw new AssertionError(); } public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { for (int i = 0; i < methods.length; i++) { if (method.equals(methods[i])) return vaTargets[i].invokeExact(args); } if (method.getDeclaringClass() == WrapperInstance.class) return getArg(method.getName()); if (isObjectMethod(method)) return callObjectMethod(this, method, args); throw new InternalError("bad proxy method: " + method); } })); }
private boolean isInterface() { return declaringClass.isInterface(); }
public Type navigateParameterized(String name, Type[] params) throws OclTypeException { Type ret = Basic.navigateAnyParameterized(name, params); if (ret != null) return ret; Method foundmethod = null; // this is very similar to tudresden.ocl.lib.OclAnyImpl.findMethod // if you find a bug here, its probably there as well. // suprisingly one has not to go after interfaces since methods // inherited from interfaces are automatically included into the // implementing class. This does not happen for methods inherited // from the superclass, so we have to ascend to all superclasses. // unfortunately the above is only true for classes, getSuperclass invoked // on an interface returns null, regardless of the interfaces extended by the // interface. Therefore, we need to check out getInterfaces() if iclass is // an interface HashSet hsVisited = new HashSet(); LinkedList llToVisit = new LinkedList(); if (c.isInterface()) { // as we're dealing with actual instances, it can be assumed that Object is // a superclass llToVisit.add(java.lang.Object.class); } classloop: for (Class iclass = c; iclass != null; ) // iclass=iclass.getSuperclass()) { Method[] methods = iclass.getDeclaredMethods(); methodloop: for (int i = 0; i < methods.length; i++) { if (!name.equals(methods[i].getName())) continue methodloop; Class[] methodparams = methods[i].getParameterTypes(); if (params.length != methodparams.length) continue methodloop; System.err.print("Checking method " + name + " ("); for (int j = 0; j < methodparams.length; j++) { if (j != 0) { System.err.print(", "); } System.err.print(methodparams[j]); } System.err.println(")"); for (int j = 0; j < params.length; j++) if (!params[j].conformsTo(getTypeForClass(methodparams[j]))) { System.err.println("No conformance for paramter # " + j); continue methodloop; } if (foundmethod == null) foundmethod = methods[i]; else throw new OclTypeException("ambigious method " + name + " of " + c + ") queried."); break classloop; } // determine classes to be visited if (iclass.isInterface()) { Class[] ca = iclass.getInterfaces(); for (int i = 0; i < ca.length; i++) { if (!hsVisited.contains(ca[i])) { llToVisit.add(ca[i]); } } } else { if (!hsVisited.contains(iclass.getSuperclass())) { llToVisit.add(iclass.getSuperclass()); } } // mark current class visited hsVisited.add(iclass); // go to next class if (!llToVisit.isEmpty()) { iclass = (Class) llToVisit.remove(0); } else { iclass = null; } } if (foundmethod == null) { StringBuffer sb = new StringBuffer(); sb.append(c.toString() + " has no method " + name + " with parameters ("); for (int i = 0; i < params.length; i++) { if (i != 0) sb.append(", "); sb.append(params[i] + "/" + params[i]); } sb.append(")"); throw new OclTypeException(sb.toString()); } return getTypeForClass(foundmethod.getReturnType()); }
/** * Return true if the type is not abstract and not an interface. This will return true essentially * when the class "should" have a default constructor or a constructor annotated with {@link * Inject @Inject} to be used properly. * * <p>As another special rule, if the input type is {@link Void}, false is returned because for * most intents and purposes, it is not instantiable. * * @param type The type to test * @return True if it should be instantiable */ public static boolean shouldBeInstantiable(Class<?> type) { return !Modifier.isAbstract(type.getModifiers()) && !type.isInterface() && !Void.class.equals(type); }
private void writeCollection( final OutputStream outputStream, final Type collectionType, final Collection<?> collection, final QName outerTagName) { final Class<?> rawType; if (collectionType instanceof ParameterizedType) { final ParameterizedType returnType = (ParameterizedType) collectionType; rawType = (Class<?>) returnType.getRawType(); } else if (collectionType instanceof Class<?>) { rawType = (Class<?>) collectionType; } else if (collectionType instanceof WildcardType) { final Type[] UpperBounds = ((WildcardType) collectionType).getUpperBounds(); if (UpperBounds.length > 0) { rawType = (Class<?>) UpperBounds[0]; } else { rawType = Object.class; } } else if (collectionType instanceof TypeVariable) { final Type[] UpperBounds = ((TypeVariable<?>) collectionType).getBounds(); if (UpperBounds.length > 0) { rawType = (Class<?>) UpperBounds[0]; } else { rawType = Object.class; } } else { throw new IllegalArgumentException("Unsupported type variable"); } Class<?> elementType; if (Collection.class.isAssignableFrom(rawType)) { final Type[] paramTypes = Types.getTypeParametersFor(Collection.class, collectionType); elementType = Types.toRawType(paramTypes[0]); if (elementType.isInterface()) { // interfaces not supported by jaxb elementType = Types.commonAncestor(collection); } } else { elementType = Types.commonAncestor(collection); } try { // As long as JAXB is an option, we have to know that this is a StAXWriter as JAXB needs to // write to that. try (XmlWriter xmlWriter = XmlStreaming.newWriter(outputStream, "UTF-8")) { Marshaller marshaller = null; XmlWriterUtil.smartStartTag(xmlWriter, outerTagName); for (Object item : collection) { if (item != null) { if (item instanceof XmlSerializable) { ((XmlSerializable) item).serialize(xmlWriter); } else if (item instanceof Node) { XmlWriterUtil.serialize(xmlWriter, (Node) item); } else { if (marshaller == null) { JAXBContext jaxbcontext = null; if (elementType == null) { jaxbcontext = newJAXBContext(JAXBCollectionWrapper.class); } else { jaxbcontext = newJAXBContext(JAXBCollectionWrapper.class, elementType); } marshaller = jaxbcontext.createMarshaller(); } marshaller.marshal(item, (XMLStreamWriter) getDelegateMethod().invoke(xmlWriter)); } } } XmlWriterUtil.endTag(xmlWriter, outerTagName); } } catch (Throwable e) { throw new MessagingException(e); } }
@Override public boolean isInterface() { return clazz.isInterface(); }
/** * Derive a ranking based on how "natural" the conversion is. The special value CONVERSION_NONE * means no conversion is possible, and CONVERSION_NONTRIVIAL signals that more type conformance * testing is required. Based on <a * href="http://www.mozilla.org/js/liveconnect/lc3_method_overloading.html">"preferred method * conversions" from Live Connect 3</a> */ static int getConversionWeight(Object fromObj, Class<?> to) { int fromCode = getJSTypeCode(fromObj); switch (fromCode) { case JSTYPE_UNDEFINED: if (to == ScriptRuntime.StringClass || to == ScriptRuntime.ObjectClass) { return 1; } break; case JSTYPE_NULL: if (!to.isPrimitive()) { return 1; } break; case JSTYPE_BOOLEAN: // "boolean" is #1 if (to == Boolean.TYPE) { return 1; } else if (to == ScriptRuntime.BooleanClass) { return 2; } else if (to == ScriptRuntime.ObjectClass) { return 3; } else if (to == ScriptRuntime.StringClass) { return 4; } break; case JSTYPE_NUMBER: if (to.isPrimitive()) { if (to == Double.TYPE) { return 1; } else if (to != Boolean.TYPE) { return 1 + getSizeRank(to); } } else { if (to == ScriptRuntime.StringClass) { // native numbers are #1-8 return 9; } else if (to == ScriptRuntime.ObjectClass) { return 10; } else if (ScriptRuntime.NumberClass.isAssignableFrom(to)) { // "double" is #1 return 2; } } break; case JSTYPE_STRING: if (to == ScriptRuntime.StringClass) { return 1; } else if (to.isInstance(fromObj)) { return 2; } else if (to.isPrimitive()) { if (to == Character.TYPE) { return 3; } else if (to != Boolean.TYPE) { return 4; } } break; case JSTYPE_JAVA_CLASS: if (to == ScriptRuntime.ClassClass) { return 1; } else if (to == ScriptRuntime.ObjectClass) { return 3; } else if (to == ScriptRuntime.StringClass) { return 4; } break; case JSTYPE_JAVA_OBJECT: case JSTYPE_JAVA_ARRAY: Object javaObj = fromObj; if (javaObj instanceof Wrapper) { javaObj = ((Wrapper) javaObj).unwrap(); } if (to.isInstance(javaObj)) { return CONVERSION_NONTRIVIAL; } if (to == ScriptRuntime.StringClass) { return 2; } else if (to.isPrimitive() && to != Boolean.TYPE) { return (fromCode == JSTYPE_JAVA_ARRAY) ? CONVERSION_NONE : 2 + getSizeRank(to); } break; case JSTYPE_OBJECT: // Other objects takes #1-#3 spots if (to == fromObj.getClass()) { // No conversion required return 1; } if (to.isArray()) { if (fromObj instanceof NativeArray) { // This is a native array conversion to a java array // Array conversions are all equal, and preferable to object // and string conversion, per LC3. return 1; } } else if (to == ScriptRuntime.ObjectClass) { return 2; } else if (to == ScriptRuntime.StringClass) { return 3; } else if (to == ScriptRuntime.DateClass) { if (fromObj instanceof NativeDate) { // This is a native date to java date conversion return 1; } } else if (to.isInterface()) { if (fromObj instanceof Function) { // See comments in coerceType if (to.getMethods().length == 1) { return 1; } } return 11; } else if (to.isPrimitive() && to != Boolean.TYPE) { return 3 + getSizeRank(to); } break; } return CONVERSION_NONE; }
/** * Gets the actual type arguments that are used in a given implementation of a given generic base * class or interface. (Based on code copyright 2007 by Ian Robertson). * * @param base the generic base class or interface * @param implementation the type (potentially) implementing the given base class or interface * @return a list of the raw classes for the actual type arguments. */ @NotNull public static List<Class<?>> getTypeArguments( @NotNull Class<?> base, @NotNull Class<?> implementation) { Map<Type, Type> resolvedTypes = new HashMap<Type, Type>(); // first we need to resolve all supertypes up to the required base class or interface // and find the right Type for it Type type; Queue<Type> toCheck = new LinkedList<Type>(); toCheck.add(implementation); while (true) { // if we have checked everything and not found the base class we return an empty list if (toCheck.isEmpty()) return ImmutableList.of(); type = toCheck.remove(); Class<?> clazz; if (type instanceof Class) { // there is no useful information for us in raw types, so just keep going up the inheritance // chain clazz = (Class) type; if (base.isInterface()) { // if we are actually looking for the type parameters to an interface we also need to // look at all the ones implemented by the given current one toCheck.addAll(Arrays.asList(clazz.getGenericInterfaces())); } } else if (type instanceof ParameterizedType) { ParameterizedType parameterizedType = (ParameterizedType) type; clazz = (Class) parameterizedType.getRawType(); // for instances of ParameterizedType we extract and remember all type arguments TypeVariable<?>[] typeParameters = clazz.getTypeParameters(); Type[] actualTypeArguments = parameterizedType.getActualTypeArguments(); for (int i = 0; i < actualTypeArguments.length; i++) { resolvedTypes.put(typeParameters[i], actualTypeArguments[i]); } } else { return ImmutableList.of(); } // we can stop if we have reached the sought for base type if (base.equals(getClass(type))) break; toCheck.add(clazz.getGenericSuperclass()); } // finally, for each actual type argument provided to baseClass, // determine (if possible) the raw class for that type argument. Type[] actualTypeArguments; if (type instanceof Class) { actualTypeArguments = ((Class) type).getTypeParameters(); } else { actualTypeArguments = ((ParameterizedType) type).getActualTypeArguments(); } List<Class<?>> typeArgumentsAsClasses = new ArrayList<Class<?>>(); // resolve types by chasing down type variables. for (Type baseType : actualTypeArguments) { while (resolvedTypes.containsKey(baseType)) { baseType = resolvedTypes.get(baseType); } typeArgumentsAsClasses.add(getClass(baseType)); } return typeArgumentsAsClasses; }
/** Type-munging for field setting and method invocation. Conforms to LC3 specification */ static Object coerceTypeImpl(Class<?> type, Object value) { if (value != null && value.getClass() == type) { return value; } switch (getJSTypeCode(value)) { case JSTYPE_NULL: // raise error if type.isPrimitive() if (type.isPrimitive()) { reportConversionError(value, type); } return null; case JSTYPE_UNDEFINED: if (type == ScriptRuntime.StringClass || type == ScriptRuntime.ObjectClass) { return "undefined"; } else { reportConversionError("undefined", type); } break; case JSTYPE_BOOLEAN: // Under LC3, only JS Booleans can be coerced into a Boolean value if (type == Boolean.TYPE || type == ScriptRuntime.BooleanClass || type == ScriptRuntime.ObjectClass) { return value; } else if (type == ScriptRuntime.StringClass) { return value.toString(); } else { reportConversionError(value, type); } break; case JSTYPE_NUMBER: if (type == ScriptRuntime.StringClass) { return ScriptRuntime.toString(value); } else if (type == ScriptRuntime.ObjectClass) { return coerceToNumber(Double.TYPE, value); } else if ((type.isPrimitive() && type != Boolean.TYPE) || ScriptRuntime.NumberClass.isAssignableFrom(type)) { return coerceToNumber(type, value); } else { reportConversionError(value, type); } break; case JSTYPE_STRING: if (type == ScriptRuntime.StringClass || type.isInstance(value)) { return value; } else if (type == Character.TYPE || type == ScriptRuntime.CharacterClass) { // Special case for converting a single char string to a // character // Placed here because it applies *only* to JS strings, // not other JS objects converted to strings if (((String) value).length() == 1) { return new Character(((String) value).charAt(0)); } else { return coerceToNumber(type, value); } } else if ((type.isPrimitive() && type != Boolean.TYPE) || ScriptRuntime.NumberClass.isAssignableFrom(type)) { return coerceToNumber(type, value); } else { reportConversionError(value, type); } break; case JSTYPE_JAVA_CLASS: if (value instanceof Wrapper) { value = ((Wrapper) value).unwrap(); } if (type == ScriptRuntime.ClassClass || type == ScriptRuntime.ObjectClass) { return value; } else if (type == ScriptRuntime.StringClass) { return value.toString(); } else { reportConversionError(value, type); } break; case JSTYPE_JAVA_OBJECT: case JSTYPE_JAVA_ARRAY: if (value instanceof Wrapper) { value = ((Wrapper) value).unwrap(); } if (type.isPrimitive()) { if (type == Boolean.TYPE) { reportConversionError(value, type); } return coerceToNumber(type, value); } else { if (type == ScriptRuntime.StringClass) { return value.toString(); } else { if (type.isInstance(value)) { return value; } else { reportConversionError(value, type); } } } break; case JSTYPE_OBJECT: if (type == ScriptRuntime.StringClass) { return ScriptRuntime.toString(value); } else if (type.isPrimitive()) { if (type == Boolean.TYPE) { reportConversionError(value, type); } return coerceToNumber(type, value); } else if (type.isInstance(value)) { return value; } else if (type == ScriptRuntime.DateClass && value instanceof NativeDate) { double time = ((NativeDate) value).getJSTimeValue(); // XXX: This will replace NaN by 0 return new Date((long) time); } else if (type.isArray() && value instanceof NativeArray) { // Make a new java array, and coerce the JS array components // to the target (component) type. NativeArray array = (NativeArray) value; long length = array.getLength(); Class<?> arrayType = type.getComponentType(); Object Result = Array.newInstance(arrayType, (int) length); for (int i = 0; i < length; ++i) { try { Array.set(Result, i, coerceType(arrayType, array.get(i, array))); } catch (EvaluatorException ee) { reportConversionError(value, type); } } return Result; } else if (value instanceof Wrapper) { value = ((Wrapper) value).unwrap(); if (type.isInstance(value)) return value; reportConversionError(value, type); } else if (type.isInterface() && value instanceof Callable) { // Try to use function as implementation of Java interface. // // XXX: Currently only instances of ScriptableObject are // supported since the resulting interface proxies should // be reused next time conversion is made and generic // Callable has no storage for it. Weak references can // address it but for now use this restriction. if (value instanceof ScriptableObject) { ScriptableObject so = (ScriptableObject) value; Object key = Kit.makeHashKeyFromPair(COERCED_INTERFACE_KEY, type); Object old = so.getAssociatedValue(key); if (old != null) { // Function was already wrapped return old; } Context cx = Context.getContext(); Object glue = InterfaceAdapter.create(cx, type, (Callable) value); // Store for later retrival glue = so.associateValue(key, glue); return glue; } reportConversionError(value, type); } else { reportConversionError(value, type); } break; } return value; }
static Object js_createAdapter(Context cx, Scriptable scope, Object[] args) { int N = args.length; if (N == 0) { throw ScriptRuntime.typeError0("msg.adapter.zero.args"); } // Expected arguments: // Any number of NativeJavaClass objects representing the super-class // and/or interfaces to implement, followed by one NativeObject providing // the implementation, followed by any number of arguments to pass on // to the (super-class) constructor. int classCount; for (classCount = 0; classCount < N - 1; classCount++) { Object arg = args[classCount]; // We explicitly test for NativeObject here since checking for // instanceof ScriptableObject or !(instanceof NativeJavaClass) // would fail for a Java class that isn't found in the class path // as NativeJavaPackage extends ScriptableObject. if (arg instanceof NativeObject) { break; } if (!(arg instanceof NativeJavaClass)) { throw ScriptRuntime.typeError2( "msg.not.java.class.arg", String.valueOf(classCount), ScriptRuntime.toString(arg)); } } Class<?> superClass = null; Class<?>[] intfs = new Class[classCount]; int interfaceCount = 0; for (int i = 0; i < classCount; ++i) { Class<?> c = ((NativeJavaClass) args[i]).getClassObject(); if (!c.isInterface()) { if (superClass != null) { throw ScriptRuntime.typeError2("msg.only.one.super", superClass.getName(), c.getName()); } superClass = c; } else { intfs[interfaceCount++] = c; } } if (superClass == null) { superClass = ScriptRuntime.ObjectClass; } Class<?>[] interfaces = new Class[interfaceCount]; System.arraycopy(intfs, 0, interfaces, 0, interfaceCount); // next argument is implementation, must be scriptable Scriptable obj = ScriptableObject.ensureScriptable(args[classCount]); Class<?> adapterClass = getAdapterClass(scope, superClass, interfaces, obj); Object adapter; int argsCount = N - classCount - 1; try { if (argsCount > 0) { // Arguments contain parameters for super-class constructor. // We use the generic Java method lookup logic to find and // invoke the right constructor. Object[] ctorArgs = new Object[argsCount + 2]; ctorArgs[0] = obj; ctorArgs[1] = cx.getFactory(); System.arraycopy(args, classCount + 1, ctorArgs, 2, argsCount); // TODO: cache class wrapper? NativeJavaClass classWrapper = new NativeJavaClass(scope, adapterClass, true); NativeJavaMethod ctors = classWrapper.members.ctors; int index = ctors.findCachedFunction(cx, ctorArgs); if (index < 0) { String sig = NativeJavaMethod.scriptSignature(args); throw Context.reportRuntimeError2("msg.no.java.ctor", adapterClass.getName(), sig); } // Found the constructor, so try invoking it. adapter = NativeJavaClass.constructInternal(ctorArgs, ctors.methods[index]); } else { Class<?>[] ctorParms = {ScriptRuntime.ScriptableClass, ScriptRuntime.ContextFactoryClass}; Object[] ctorArgs = {obj, cx.getFactory()}; adapter = adapterClass.getConstructor(ctorParms).newInstance(ctorArgs); } Object self = getAdapterSelf(adapterClass, adapter); // Return unwrapped JavaAdapter if it implements Scriptable if (self instanceof Wrapper) { Object unwrapped = ((Wrapper) self).unwrap(); if (unwrapped instanceof Scriptable) { if (unwrapped instanceof ScriptableObject) { ScriptRuntime.setObjectProtoAndParent((ScriptableObject) unwrapped, scope); } return unwrapped; } } return self; } catch (Exception ex) { throw Context.throwAsScriptRuntimeEx(ex); } }