public void train(int[] instanceLengths, String trainfile, File train_forest) throws IOException { // System.out.print("About to train. "); // System.out.print("Num Feats: " + pipe.dataAlphabet.size()); int i = 0; for (i = 0; i < options.numIters; i++) { System.out.print(" Iteration " + i); // System.out.println("========================"); // System.out.println("Iteration: " + i); // System.out.println("========================"); System.out.print("["); long start = System.currentTimeMillis(); trainingIter(instanceLengths, trainfile, train_forest, i + 1); long end = System.currentTimeMillis(); // System.out.println("Training iter took: " + (end-start)); System.out.println("|Time:" + (end - start) + "]"); } params.averageParams(i * instanceLengths.length); }
public void train(int[] instanceLengths, int[] ignore, String trainfile, File train_forest) throws IOException { int i = 0; for (i = 0; i < options.numIters; i++) { System.out.print(" Iteration " + i); System.out.print("["); long start = System.currentTimeMillis(); trainingIter(instanceLengths, ignore, trainfile, train_forest, i + 1); long end = System.currentTimeMillis(); // System.out.println("Training iter took: " + (end-start)); System.out.println("|Time:" + (end - start) + "]"); } params.averageParams(i * countActualInstances(ignore)); // afm 06-04-08 if (options.separateLab) { LabelClassifier oc = new LabelClassifier( options, instanceLengths, ignore, trainfile, train_forest, this, pipe); try { classifier = oc.trainClassifier(100); } catch (Exception e) { e.printStackTrace(); } } }