コード例 #1
0
ファイル: ProcDataset.java プロジェクト: micyee/granada
  /**
   * Process a dataset for classification
   *
   * @return Nothing
   */
  public void processClassifierDataset() throws IOException {
    try {

      ndata = IS.getNumInstances();
      ninputs = Attributes.getInputNumAttributes();
      nvariables = ninputs + Attributes.getOutputNumAttributes();
      // Check that there is only one output variable and
      // it is nominal
      if (Attributes.getOutputNumAttributes() > 1) {
        System.out.println("This algorithm can not process MIMO datasets");
        System.out.println("All outputs but the first one will be removed");
      }
      boolean noOutputs = false;
      if (Attributes.getOutputNumAttributes() < 1) {
        System.out.println("This algorithm cannot process datasets without outputs");
        System.out.println("Zero-valued output generated");
        noOutputs = true;
      }
      // Initialice and fill our own tables
      X = new double[ndata][ninputs];
      missing = new boolean[ndata][ninputs];
      C = new int[ndata];
      // Maximum and minimum of inputs
      imax = new double[ninputs];
      imin = new double[ninputs];
      // Maximum and minimum for output data
      omax = 0;
      omin = 0;
      // All values are casted into double/integer
      nclasses = 0;
      for (int i = 0; i < X.length; i++) {
        Instance inst = IS.getInstance(i);
        for (int j = 0; j < ninputs; j++) {
          X[i][j] = IS.getInputNumericValue(i, j);
          missing[i][j] = inst.getInputMissingValues(j);
          if (X[i][j] > imax[j] || i == 0) imax[j] = X[i][j];
          if (X[i][j] < imin[j] || i == 0) imin[j] = X[i][j];
        }
        if (noOutputs) C[i] = 0;
        else C[i] = (int) IS.getOutputNumericValue(i, 0);
        if (C[i] > nclasses) nclasses = C[i];
      }
      nclasses++;
      System.out.println("Number of classes=" + nclasses);
    } catch (Exception e) {
      System.out.println("DBG: Exception in readSet");
      e.printStackTrace();
    }
  }
コード例 #2
0
ファイル: ProcessDataset.java プロジェクト: RubelAhmed57/KEEL
  /**
   * Process a dataset file for a clustering problem.
   *
   * @param nfexamples Name of the dataset file
   * @param train The dataset file is for training or for test
   * @throws java.io.IOException if there is any semantical, lexical or sintactical error in the
   *     input file.
   */
  public void processClusterDataset(String nfexamples, boolean train) throws IOException {

    try {

      // Load in memory a dataset that contains a classification problem
      IS.readSet(nfexamples, train);

      nData = IS.getNumInstances();
      nInputs = Attributes.getInputNumAttributes();
      nVariables = nInputs + Attributes.getOutputNumAttributes();

      if (Attributes.getOutputNumAttributes() != 0) {
        System.out.println("This algorithm can not process datasets with outputs");
        System.out.println("All outputs will be removed");
      }

      // Initialize and fill our own tables
      X = new double[nData][nInputs];
      missing = new boolean[nData][nInputs];

      // Maximum and minimum of inputs
      iMaximum = new double[nInputs];
      iMinimum = new double[nInputs];

      // Maximum and minimum for output data
      oMaximum = 0;
      oMinimum = 0;

      // All values are casted into double/integer
      nClasses = 0;
      for (int i = 0; i < X.length; i++) {
        Instance inst = IS.getInstance(i);
        for (int j = 0; j < nInputs; j++) {
          X[i][j] = IS.getInputNumericValue(i, j);
          missing[i][j] = inst.getInputMissingValues(j);
          if (X[i][j] > iMaximum[j] || i == 0) {
            iMaximum[j] = X[i][j];
          }
          if (X[i][j] < iMinimum[j] || i == 0) {
            iMinimum[j] = X[i][j];
          }
        }
      }

    } catch (Exception e) {
      System.out.println("DBG: Exception in readSet");
      e.printStackTrace();
    }
  }
コード例 #3
0
ファイル: ProcDataset.java プロジェクト: micyee/granada
  /**
   * Process a dataset for modelling
   *
   * @return Nothing
   */
  public void processModelDataset() throws IOException {
    try {

      // Load in memory a dataset that contains a classification problem
      // IS.readSet(nfejemplos,train);
      ndata = IS.getNumInstances();
      ninputs = Attributes.getInputNumAttributes();
      nvariables = ninputs + Attributes.getOutputNumAttributes();
      if (Attributes.getOutputNumAttributes() > 1) {
        System.out.println("This algorithm can not process MIMO datasets");
        System.out.println("All outputs but the first one will be removed");
      }
      boolean noOutputs = false;
      if (Attributes.getOutputNumAttributes() < 1) {
        System.out.println("This algorithm can not process datasets without outputs");
        System.out.println("Zero-valued output generated");
        noOutputs = true;
      }
      // Initialice and fill our own tables
      X = new double[ndata][ninputs];
      missing = new boolean[ndata][ninputs];
      Y = new double[ndata];
      // Maximum and minimum of inputs
      imax = new double[ninputs];
      imin = new double[ninputs];
      // Maximum and minimum for output data
      omax = 0;
      omin = 0;
      // All values are casted into double/integer
      nclasses = 0;
      for (int i = 0; i < X.length; i++) {
        Instance inst = IS.getInstance(i);
        for (int j = 0; j < ninputs; j++) {
          X[i][j] = IS.getInputNumericValue(i, j);
          missing[i][j] = inst.getInputMissingValues(j);
          if (X[i][j] > imax[j] || i == 0) imax[j] = X[i][j];
          if (X[i][j] < imin[j] || i == 0) imin[j] = X[i][j];
        }
        if (noOutputs) Y[i] = 0;
        else Y[i] = IS.getOutputNumericValue(i, 0);
        if (Y[i] > omax || i == 0) omax = Y[i];
        if (Y[i] < omin || i == 0) omin = Y[i];
      }
    } catch (Exception e) {
      System.out.println("DBG: Exception in readSet");
      e.printStackTrace();
    }
  }
コード例 #4
0
ファイル: ProcDataset.java プロジェクト: micyee/granada
  /**
   * Returs the type of the dataset 0-Modelling, 1-Clasiffication, 2-Clustering
   *
   * @return type of the dataset 0-Modelling, 1-Clasiffication, 2-Clustering
   */
  public int datasetType() {

    if (Attributes.getOutputNumAttributes() >= 1) {
      if (Attributes.hasNominalAttributes()) return (1);
      else return (0);
    } else return (2);
  }
コード例 #5
0
ファイル: svmRegression.java プロジェクト: Navieclipse/KEEL
  /** Process the training and test files provided in the parameters file to the constructor. */
  public void process() {
    double[] outputs;
    double[] outputs2;
    Instance neighbor;
    double dist, mean;
    int actual;
    int[] N = new int[nneigh];
    double[] Ndist = new double[nneigh];
    boolean allNull;
    svm_problem SVMp = null;
    svm_parameter SVMparam = new svm_parameter();
    svm_model svr = null;
    svm_node SVMn[];
    double[] outputsCandidate = null;
    boolean same = true;
    Vector instancesSelected = new Vector();
    Vector instancesSelected2 = new Vector();

    // SVM PARAMETERS
    SVMparam.C = C;
    SVMparam.cache_size = 10; // 10MB of cache
    SVMparam.degree = degree;
    SVMparam.eps = eps;
    SVMparam.gamma = gamma;
    SVMparam.nr_weight = 0;
    SVMparam.nu = nu;
    SVMparam.p = p;
    SVMparam.shrinking = shrinking;
    SVMparam.probability = 0;
    if (kernelType.compareTo("LINEAR") == 0) {
      SVMparam.kernel_type = svm_parameter.LINEAR;
    } else if (kernelType.compareTo("POLY") == 0) {
      SVMparam.kernel_type = svm_parameter.POLY;
    } else if (kernelType.compareTo("RBF") == 0) {
      SVMparam.kernel_type = svm_parameter.RBF;
    } else if (kernelType.compareTo("SIGMOID") == 0) {
      SVMparam.kernel_type = svm_parameter.SIGMOID;
    }

    SVMparam.svm_type = svm_parameter.EPSILON_SVR;

    try {

      // Load in memory a dataset that contains a classification problem
      IS.readSet(input_train_name, true);
      int in = 0;
      int out = 0;

      ndatos = IS.getNumInstances();
      nvariables = Attributes.getNumAttributes();
      nentradas = Attributes.getInputNumAttributes();
      nsalidas = Attributes.getOutputNumAttributes();

      X = new String[ndatos][2]; // matrix with transformed data

      mostCommon = new String[nvariables];
      SVMp = new svm_problem();
      SVMp.l = ndatos;
      SVMp.y = new double[SVMp.l];
      SVMp.x = new svm_node[SVMp.l][nentradas + 1];
      for (int l = 0; l < SVMp.l; l++) {
        for (int n = 0; n < Attributes.getInputNumAttributes() + 1; n++) {
          SVMp.x[l][n] = new svm_node();
        }
      }

      for (int i = 0; i < ndatos; i++) {
        Instance inst = IS.getInstance(i);

        SVMp.y[i] = inst.getAllOutputValues()[0];
        for (int n = 0; n < Attributes.getInputNumAttributes(); n++) {
          SVMp.x[i][n].index = n;
          SVMp.x[i][n].value = inst.getAllInputValues()[n];
          SVMp.y[i] = inst.getAllOutputValues()[0];
        }
        // end of instance
        SVMp.x[i][nentradas].index = -1;
      }
      if (svm.svm_check_parameter(SVMp, SVMparam) != null) {
        System.out.println("SVM parameter error in training:");
        System.out.println(svm.svm_check_parameter(SVMp, SVMparam));
        System.exit(-1);
      }
      // train the SVM
      if (ndatos > 0) {
        svr = svm.svm_train(SVMp, SVMparam);
      }
      for (int i = 0; i < ndatos; i++) {
        Instance inst = IS.getInstance(i);
        X[i][0] = new String(String.valueOf(inst.getAllOutputValues()[0]));
        //			the values used for regression
        SVMn = new svm_node[Attributes.getInputNumAttributes() + 1];
        for (int n = 0; n < Attributes.getInputNumAttributes(); n++) {
          SVMn[n] = new svm_node();
          SVMn[n].index = n;
          SVMn[n].value = inst.getAllInputValues()[n];
        }
        SVMn[nentradas] = new svm_node();
        SVMn[nentradas].index = -1;
        // pedict the class
        X[i][1] = new String(String.valueOf((svm.svm_predict(svr, SVMn))));
      }
    } catch (Exception e) {
      System.out.println("Dataset exception = " + e);
      e.printStackTrace();
      System.exit(-1);
    }
    write_results(output_train_name);
    /** ************************************************************************************ */
    try {

      // Load in memory a dataset that contains a classification
      // problem
      IS.readSet(input_test_name, false);
      int in = 0;
      int out = 0;

      ndatos = IS.getNumInstances();
      nvariables = Attributes.getNumAttributes();
      nentradas = Attributes.getInputNumAttributes();
      nsalidas = Attributes.getOutputNumAttributes();

      X = new String[ndatos][2]; // matrix with transformed data
      // data

      mostCommon = new String[nvariables];

      for (int i = 0; i < ndatos; i++) {
        Instance inst = IS.getInstance(i);
        X[i][0] = new String(String.valueOf(inst.getAllOutputValues()[0]));

        SVMn = new svm_node[Attributes.getInputNumAttributes() + 1];
        for (int n = 0; n < Attributes.getInputNumAttributes(); n++) {
          SVMn[n] = new svm_node();
          SVMn[n].index = n;
          SVMn[n].value = inst.getAllInputValues()[n];
        }
        SVMn[nentradas] = new svm_node();
        SVMn[nentradas].index = -1;
        // pedict the class
        X[i][1] = new String(String.valueOf(svm.svm_predict(svr, SVMn)));
      }
    } catch (Exception e) {
      System.out.println("Dataset exception = " + e);
      e.printStackTrace();
      System.exit(-1);
    }
    System.out.println("escribiendo test");
    write_results(output_test_name);
  }
コード例 #6
0
ファイル: ProcessDataset.java プロジェクト: RubelAhmed57/KEEL
  /**
   * Process a dataset file for a classification problem.
   *
   * @param nfejemplos Name of the dataset file
   * @param train The dataset file is for training or for test
   * @throws java.io.IOException if there is any semantical, lexical or sintactical error in the
   *     input file.
   */
  public void processClassifierDataset(String nfejemplos, boolean train) throws IOException {

    try {

      // Load in memory a dataset that contains a classification problem
      IS.readSet(nfejemplos, train);

      nData = IS.getNumInstances();
      nInputs = Attributes.getInputNumAttributes();
      nVariables = nInputs + Attributes.getOutputNumAttributes();

      // Check that there is only one output variable and
      // it is nominal

      if (Attributes.getOutputNumAttributes() > 1) {
        System.out.println("This algorithm can not process MIMO datasets");
        System.out.println("All outputs but the first one will be removed");
      }

      boolean noOutputs = false;
      if (Attributes.getOutputNumAttributes() < 1) {
        System.out.println("This algorithm can not process datasets without outputs");
        System.out.println("Zero-valued output generated");
        noOutputs = true;
      }

      // Initialize and fill our own tables
      X = new double[nData][nInputs];
      missing = new boolean[nData][nInputs];
      C = new int[nData];

      // Maximum and minimum of inputs
      iMaximum = new double[nInputs];
      iMinimum = new double[nInputs];

      // Maximum and minimum for output data
      oMaximum = 0;
      oMinimum = 0;

      // All values are casted into double/integer
      nClasses = 0;
      for (int i = 0; i < X.length; i++) {
        Instance inst = IS.getInstance(i);
        for (int j = 0; j < nInputs; j++) {
          X[i][j] = IS.getInputNumericValue(i, j);
          missing[i][j] = inst.getInputMissingValues(j);
          if (X[i][j] > iMaximum[j] || i == 0) {
            iMaximum[j] = X[i][j];
          }
          if (X[i][j] < iMinimum[j] || i == 0) {
            iMinimum[j] = X[i][j];
          }
        }

        if (noOutputs) {
          C[i] = 0;
        } else {
          C[i] = (int) IS.getOutputNumericValue(i, 0);
        }
        if (C[i] > nClasses) {
          nClasses = C[i];
        }
      }
      nClasses++;
      System.out.println("Number of classes=" + nClasses);

    } catch (Exception e) {
      System.out.println("DBG: Exception in readSet");
      e.printStackTrace();
    }
  }
コード例 #7
0
ファイル: InstanceSet.java プロジェクト: Navieclipse/KEEL
  /**
   * This method reads all the information in a DB and load it to memory.
   *
   * @param fileName is the database file name.
   * @param isTrain is a flag that indicate if the database is for a train or for a test.
   * @throws DatasetException if there is any semantical error in the input file.
   * @throws HeaderFormatException if there is any lexical or sintactical error in the header of the
   *     input file
   */
  public void readSet(String fileName, boolean isTrain)
      throws DatasetException, HeaderFormatException {
    String line;

    System.out.println("Opening the file: " + fileName + ".");
    // Parsing the header of the DB.
    errorLogger = new FormatErrorKeeper();

    // Declaring an instance parser
    InstanceParser parser = new InstanceParser(fileName, isTrain);

    // Reading information in the header, i.e., @relation, @attribute, @inputs and @outputs
    parseHeader(parser, isTrain);

    System.out.println(
        " The number of output attributes is: " + Attributes.getOutputNumAttributes());

    // The attributes statistics are init if we are in train mode.
    if (isTrain && Attributes.getOutputNumAttributes() == 1) {
      Attributes.initStatistics();
    }

    // A temporal vector is used to store the instances read.

    System.out.println("\n\n  > Reading the data ");
    Vector tempSet = new Vector(1000, 100000);
    while ((line = parser.getLine()) != null) {
      // System.out.println ("    > Data line: " + line );
      tempSet.addElement(new Instance(line, isTrain, tempSet.size()));
    }

    // The vector of instances is converted to an array of instances.
    int sizeInstance = tempSet.size();
    System.out.println("    > Number of instances read: " + tempSet.size());
    instanceSet = new Instance[sizeInstance];
    for (int i = 0; i < sizeInstance; i++) {
      instanceSet[i] = (Instance) tempSet.elementAt(i);
    }
    // System.out.println("After converting all instances");

    // System.out.println("The error logger has any error: "+errorLogger.getNumErrors());
    if (errorLogger.getNumErrors() > 0) {

      System.out.println(
          "There has been " + errorLogger.getAllErrors().size() + " errors in the Dataset format.");
      for (int k = 0; k < errorLogger.getNumErrors(); k++) {
        errorLogger.getError(k).print();
      }
      throw new DatasetException(
          "There has been " + errorLogger.getAllErrors().size() + " errors in the Dataset format",
          errorLogger.getAllErrors());
    }

    System.out.println(
        "\n  > Finishing the statistics: (isTrain)"
            + isTrain
            + ", (# out attributes)"
            + Attributes.getOutputNumAttributes());
    // If being on a train dataset, the statistics are finished
    if (isTrain && Attributes.getOutputNumAttributes() == 1) {
      Attributes.finishStatistics();
    }

    System.out.println("  >> File LOADED CORRECTLY!!");
  } // end of InstanceSet constructor.
コード例 #8
0
ファイル: kmeansImpute.java プロジェクト: Navieclipse/KEEL
  /** Process the training and test files provided in the parameters file to the constructor. */
  public void process() {
    // declarations
    double[] outputs;
    double[] outputs2;
    Instance neighbor;
    double dist, mean;
    int actual;
    Randomize rnd = new Randomize();
    Instance ex;
    gCenter kmeans = null;
    int iterations = 0;
    double E;
    double prevE;
    int totalMissing = 0;
    boolean allMissing = true;

    rnd.setSeed(semilla);
    // PROCESS
    try {

      // Load in memory a dataset that contains a classification problem
      IS.readSet(input_train_name, true);
      int in = 0;
      int out = 0;

      ndatos = IS.getNumInstances();
      nvariables = Attributes.getNumAttributes();
      nentradas = Attributes.getInputNumAttributes();
      nsalidas = Attributes.getOutputNumAttributes();

      X = new String[ndatos][nvariables]; // matrix with transformed data
      kmeans = new gCenter(K, ndatos, nvariables);

      timesSeen = new FreqList[nvariables];
      mostCommon = new String[nvariables];

      // first, we choose k 'means' randomly from all
      // instances
      totalMissing = 0;
      for (int i = 0; i < ndatos; i++) {
        Instance inst = IS.getInstance(i);
        if (inst.existsAnyMissingValue()) totalMissing++;
      }
      if (totalMissing == ndatos) allMissing = true;
      else allMissing = false;
      for (int numMeans = 0; numMeans < K; numMeans++) {
        do {
          actual = (int) (ndatos * rnd.Rand());
          ex = IS.getInstance(actual);
        } while (ex.existsAnyMissingValue() && !allMissing);

        kmeans.copyCenter(ex, numMeans);
      }

      // now, iterate adjusting clusters' centers and
      // instances to them
      prevE = 0;
      iterations = 0;
      do {
        for (int i = 0; i < ndatos; i++) {
          Instance inst = IS.getInstance(i);

          kmeans.setClusterOf(inst, i);
        }
        // set new centers
        kmeans.recalculateCenters(IS);
        // compute RMSE
        E = 0;
        for (int i = 0; i < ndatos; i++) {
          Instance inst = IS.getInstance(i);

          E += kmeans.distance(inst, kmeans.getClusterOf(i));
        }
        iterations++;
        // System.out.println(iterations+"\t"+E);
        if (Math.abs(prevE - E) == 0) iterations = maxIter;
        else prevE = E;
      } while (E > minError && iterations < maxIter);
      for (int i = 0; i < ndatos; i++) {
        Instance inst = IS.getInstance(i);

        in = 0;
        out = 0;

        for (int j = 0; j < nvariables; j++) {
          Attribute a = Attributes.getAttribute(j);

          direccion = a.getDirectionAttribute();
          tipo = a.getType();

          if (direccion == Attribute.INPUT) {
            if (tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in)) {
              X[i][j] = new String(String.valueOf(inst.getInputRealValues(in)));
            } else {
              if (!inst.getInputMissingValues(in)) X[i][j] = inst.getInputNominalValues(in);
              else {
                actual = kmeans.getClusterOf(i);
                X[i][j] = new String(kmeans.valueAt(actual, j));
              }
            }
            in++;
          } else {
            if (direccion == Attribute.OUTPUT) {
              if (tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)) {
                X[i][j] = new String(String.valueOf(inst.getOutputRealValues(out)));
              } else {
                if (!inst.getOutputMissingValues(out)) X[i][j] = inst.getOutputNominalValues(out);
                else {
                  actual = kmeans.getClusterOf(i);
                  X[i][j] = new String(kmeans.valueAt(actual, j));
                }
              }
              out++;
            }
          }
        }
      }
    } catch (Exception e) {
      System.out.println("Dataset exception = " + e);
      e.printStackTrace();
      System.exit(-1);
    }
    write_results(output_train_name);
    /** ************************************************************************************ */
    // does a test file associated exist?
    if (input_train_name.compareTo(input_test_name) != 0) {
      try {

        // Load in memory a dataset that contains a classification problem
        IStest.readSet(input_test_name, false);
        int in = 0;
        int out = 0;

        ndatos = IStest.getNumInstances();
        nvariables = Attributes.getNumAttributes();
        nentradas = Attributes.getInputNumAttributes();
        nsalidas = Attributes.getOutputNumAttributes();

        for (int i = 0; i < ndatos; i++) {
          Instance inst = IStest.getInstance(i);

          in = 0;
          out = 0;

          for (int j = 0; j < nvariables; j++) {
            Attribute a = Attributes.getAttribute(j);

            direccion = a.getDirectionAttribute();
            tipo = a.getType();

            if (direccion == Attribute.INPUT) {
              if (tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in)) {
                X[i][j] = new String(String.valueOf(inst.getInputRealValues(in)));
              } else {
                if (!inst.getInputMissingValues(in)) X[i][j] = inst.getInputNominalValues(in);
                else {
                  actual = kmeans.getClusterOf(i);
                  X[i][j] = new String(kmeans.valueAt(actual, j));
                }
              }
              in++;
            } else {
              if (direccion == Attribute.OUTPUT) {
                if (tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)) {
                  X[i][j] = new String(String.valueOf(inst.getOutputRealValues(out)));
                } else {
                  if (!inst.getOutputMissingValues(out)) X[i][j] = inst.getOutputNominalValues(out);
                  else {
                    actual = kmeans.getClusterOf(i);
                    X[i][j] = new String(kmeans.valueAt(actual, j));
                  }
                }
                out++;
              }
            }
          }
        }
      } catch (Exception e) {
        System.out.println("Dataset exception = " + e);
        e.printStackTrace();
        System.exit(-1);
      }
      write_results(output_test_name);
    }
  }
コード例 #9
0
ファイル: ignore_missing.java プロジェクト: TheMurderer/keel
  /** Process the training and test files provided in the parameters file to the constructor. */
  public void process() {
    try {

      // Load in memory a dataset that contains a classification problem
      IS.readSet(input_train_name, true);
      int in = 0;
      int out = 0;

      ndatos = IS.getNumInstances();
      nvariables = Attributes.getNumAttributes();
      nentradas = Attributes.getInputNumAttributes();
      nsalidas = Attributes.getOutputNumAttributes();

      X = new String[ndatos][nvariables]; // matrix with transformed data
      boolean[] isMissed =
          new boolean[ndatos]; // vector which points out instances with missed data

      try {
        FileWriter file_write = new FileWriter(output_train_name);

        file_write.write(IS.getHeader());

        // now, print the normalized data
        file_write.write("@data\n");
        // file_write.close();
        PrintWriter pw = new PrintWriter(file_write);
        for (int i = 0; i < ndatos; i++) {
          Instance inst = IS.getInstance(i);
          if (!inst.existsAnyMissingValue()) {
            inst.printAsOriginal(pw);
            // file_write.write(inst.toString()); // DOES NOT WRITE BACK NON-DEF DIRECTION
            // ATTRIBUTES!!!!
            file_write.write("\n");
          }
        }
        pw.close();
        file_write.close();
      } catch (IOException e) {
        System.out.println("IO exception = " + e);
        System.exit(-1);
      }

    } catch (Exception e) {
      System.out.println("Dataset exception = " + e);
      e.printStackTrace();
      System.exit(-1);
    }
    // does a test file associated exist?
    if (input_train_name.compareTo(input_test_name) != 0) {
      try {

        // Load in memory a dataset that contains a classification problem
        IS.readSet(input_test_name, false);
        int in = 0;
        int out = 0;

        ndatos = IS.getNumInstances();
        nvariables = Attributes.getNumAttributes();
        nentradas = Attributes.getInputNumAttributes();
        nsalidas = Attributes.getOutputNumAttributes();

        X = new String[ndatos][nvariables]; // matrix with transformed data
        boolean[] isMissed =
            new boolean[ndatos]; // vector which points out instances with missed data

        try {
          FileWriter file_write = new FileWriter(output_test_name);

          file_write.write(IS.getHeader());

          // now, print the normalized data
          file_write.write("@data\n");
          PrintWriter pw = new PrintWriter(file_write);
          for (int i = 0; i < ndatos; i++) {
            Instance inst = IS.getInstance(i);
            if (!inst.existsAnyMissingValue()) {
              inst.printAsOriginal(pw);
              file_write.write("\n");
            }
          }
          pw.close();
          file_write.close();
        } catch (IOException e) {
          System.out.println("IO exception = " + e);
          System.exit(-1);
        }

      } catch (Exception e) {
        System.out.println("Dataset exception = " + e);
        e.printStackTrace();
        System.exit(-1);
      }
    }

    // write_results(); / since there ins't any data transformation, is not needed
  }
コード例 #10
0
  /** Process the training and test files provided in the parameters file to the constructor. */
  public void process() {
    double[] outputs;
    double[] outputs2;
    try {
      FileWriter file_write = new FileWriter(output_train_name);

      try {

        // Load in memory a dataset that contains a classification problem
        IS.readSet(input_train_name, true);
        int in = 0;
        int out = 0;
        int in2 = 0;
        int out2 = 0;
        int lastMissing = -1;
        boolean fin = false;
        boolean stepNext = false;

        ndatos = IS.getNumInstances();
        nvariables = Attributes.getNumAttributes();
        nentradas = Attributes.getInputNumAttributes();
        nsalidas = Attributes.getOutputNumAttributes();

        String[] row = null;
        X = new Vector[ndatos]; // matrix with transformed data
        for (int i = 0; i < ndatos; i++) X[i] = new Vector();

        timesSeen = new FreqList[nvariables];
        mostCommon = new String[nvariables];

        file_write.write(IS.getHeader());

        // now, print the normalized data
        file_write.write("@data\n");

        // now, search for missed data, and replace them with
        // the most common value

        for (int i = 0; i < ndatos; i++) {
          Instance inst = IS.getInstance(i);
          in = 0;
          out = 0;
          row = new String[nvariables];

          for (int j = 0; j < nvariables; j++) {
            Attribute a = Attributes.getAttribute(j);

            direccion = a.getDirectionAttribute();
            tipo = a.getType();

            if (direccion == Attribute.INPUT) {
              if (tipo != Attribute.NOMINAL && !inst.existsAnyMissingValue()) {
                row[j] = new String(String.valueOf(inst.getInputRealValues(in)));
              } else {
                if (!inst.existsAnyMissingValue()) row[j] = inst.getInputNominalValues(in);
                else {
                  // missing data
                  outputs = inst.getAllOutputValues();
                  in2 = 0;
                  out2 = 0;
                  for (int attr = 0; attr < nvariables; attr++) {
                    Attribute b = Attributes.getAttribute(attr);
                    direccion = b.getDirectionAttribute();
                    tipo = b.getType();
                    if (direccion == Attribute.INPUT) {
                      if (tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in2)) {
                        row[attr] = new String(String.valueOf(inst.getInputRealValues(in2)));
                      } else {
                        if (!inst.getInputMissingValues(in2))
                          row[attr] = inst.getInputNominalValues(in2);
                      }
                      in2++;
                    } else {
                      if (direccion == Attribute.OUTPUT) {
                        if (tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out2)) {
                          row[attr] = new String(String.valueOf(inst.getOutputRealValues(out2)));
                        } else {
                          if (!inst.getOutputMissingValues(out2))
                            row[attr] = inst.getOutputNominalValues(out2);
                        }
                        out2++;
                      }
                    }
                  }
                  // make frecuencies  for each attribute
                  for (int attr = 0; attr < nvariables; attr++) {
                    Attribute b = Attributes.getAttribute(attr);

                    direccion = b.getDirectionAttribute();
                    tipo = b.getType();
                    if (direccion == Attribute.INPUT && inst.getInputMissingValues(attr)) {
                      lastMissing = attr;
                      timesSeen[attr] = new FreqList();
                      for (int m = 0; m < ndatos; m++) {
                        Instance inst2 = IS.getInstance(m);
                        outputs2 = inst2.getAllOutputValues();
                        boolean sameClass = true;
                        // are they same concept instances??
                        for (int k = 0; k < nsalidas && sameClass; k++)
                          if (outputs[k] != outputs2[k]) sameClass = false;
                        if (sameClass) {
                          if (tipo != Attribute.NOMINAL && !inst2.getInputMissingValues(attr)) {
                            timesSeen[attr].AddElement(
                                new String(String.valueOf(inst2.getInputRealValues(attr))));

                          } else {
                            if (!inst2.getInputMissingValues(attr)) {
                              timesSeen[attr].AddElement(inst2.getInputNominalValues(attr));
                            }
                          }
                        }
                      }
                    }
                  }
                  for (int attr = 0; attr < nvariables; attr++) {
                    if (direccion == Attribute.INPUT && inst.getInputMissingValues(attr)) {
                      timesSeen[attr].reset();
                    }
                  }
                  fin = false;
                  stepNext = false;
                  while (!fin) {
                    in2 = 0;
                    for (int attr = 0; attr < nvariables && !fin; attr++) {
                      Attribute b = Attributes.getAttribute(attr);

                      direccion = b.getDirectionAttribute();
                      tipo = b.getType();
                      if (direccion == Attribute.INPUT && inst.getInputMissingValues(in2)) {
                        if (stepNext) {
                          timesSeen[attr].iterate();
                          stepNext = false;
                        }
                        if (timesSeen[attr].outOfBounds()) {
                          stepNext = true;
                          if (attr == lastMissing) fin = true;
                          timesSeen[attr].reset();
                        }
                        if (!fin)
                          row[attr] =
                              ((ValueFreq) timesSeen[attr].getCurrent())
                                  .getValue(); // replace missing data
                      }
                      in2++;
                    }
                    if (!fin) {
                      stepNext = true;
                      file_write.write(row[0]);
                      for (int y = 1; y < nvariables; y++) {
                        file_write.write("," + row[y]);
                      }
                      file_write.write("\n");
                      // X[i].addElement(row);
                      // row = (String[])row.clone();
                    }
                  }
                }
              }
              in++;
            } else {
              if (direccion == Attribute.OUTPUT) {
                if (tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)) {
                  row[j] = new String(String.valueOf(inst.getOutputRealValues(out)));
                } else {
                  if (!inst.getOutputMissingValues(out)) row[j] = inst.getOutputNominalValues(out);
                  else row[j] = new String("?");
                }
                out++;
              }
            }
          }
          if (!inst.existsAnyMissingValue()) {
            file_write.write(row[0]);
            for (int y = 1; y < nvariables; y++) {
              file_write.write("," + row[y]);
            }
            file_write.write("\n");
          }
        }
      } catch (Exception e) {
        System.out.println("Dataset exception = " + e);
        e.printStackTrace();
        System.exit(-1);
      }
      file_write.close();
    } catch (IOException e) {
      System.out.println("IO exception = " + e);
      e.printStackTrace();
      System.exit(-1);
    }

    /** ************************************************************************************ */
    // does a test file associated exist?
    if (input_train_name.compareTo(input_test_name) != 0) {
      try {
        FileWriter file_write = new FileWriter(output_test_name);

        try {

          // Load in memory a dataset that contains a classification problem
          IS.readSet(input_test_name, false);
          int in = 0;
          int out = 0;
          int in2 = 0;
          int out2 = 0;
          int lastMissing = -1;
          boolean fin = false;
          boolean stepNext = false;

          ndatos = IS.getNumInstances();
          nvariables = Attributes.getNumAttributes();
          nentradas = Attributes.getInputNumAttributes();
          nsalidas = Attributes.getOutputNumAttributes();

          String[] row = null;
          X = new Vector[ndatos]; // matrix with transformed data
          for (int i = 0; i < ndatos; i++) X[i] = new Vector();

          timesSeen = new FreqList[nvariables];
          mostCommon = new String[nvariables];

          file_write.write(IS.getHeader());

          // now, print the normalized data
          file_write.write("@data\n");

          // now, search for missed data, and replace them with
          // the most common value

          for (int i = 0; i < ndatos; i++) {
            Instance inst = IS.getInstance(i);
            in = 0;
            out = 0;
            row = new String[nvariables];

            for (int j = 0; j < nvariables; j++) {
              Attribute a = Attributes.getAttribute(j);

              direccion = a.getDirectionAttribute();
              tipo = a.getType();

              if (direccion == Attribute.INPUT) {
                if (tipo != Attribute.NOMINAL && !inst.existsAnyMissingValue()) {
                  row[j] = new String(String.valueOf(inst.getInputRealValues(in)));
                } else {
                  if (!inst.existsAnyMissingValue()) row[j] = inst.getInputNominalValues(in);
                  else {
                    // missing data
                    outputs = inst.getAllOutputValues();
                    in2 = 0;
                    out2 = 0;
                    for (int attr = 0; attr < nvariables; attr++) {
                      Attribute b = Attributes.getAttribute(attr);
                      direccion = b.getDirectionAttribute();
                      tipo = b.getType();
                      if (direccion == Attribute.INPUT) {
                        if (tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in2)) {
                          row[attr] = new String(String.valueOf(inst.getInputRealValues(in2)));
                        } else {
                          if (!inst.getInputMissingValues(in2))
                            row[attr] = inst.getInputNominalValues(in2);
                        }
                        in2++;
                      } else {
                        if (direccion == Attribute.OUTPUT) {
                          if (tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out2)) {
                            row[attr] = new String(String.valueOf(inst.getOutputRealValues(out2)));
                          } else {
                            if (!inst.getOutputMissingValues(out2))
                              row[attr] = inst.getOutputNominalValues(out2);
                          }
                          out2++;
                        }
                      }
                    }
                    // make frecuencies  for each attribute
                    for (int attr = 0; attr < nvariables; attr++) {
                      Attribute b = Attributes.getAttribute(attr);

                      direccion = b.getDirectionAttribute();
                      tipo = b.getType();
                      if (direccion == Attribute.INPUT && inst.getInputMissingValues(attr)) {
                        lastMissing = attr;
                        timesSeen[attr] = new FreqList();
                        for (int m = 0; m < ndatos; m++) {
                          Instance inst2 = IS.getInstance(m);
                          outputs2 = inst2.getAllOutputValues();
                          boolean sameClass = true;
                          // are they same concept instances??
                          for (int k = 0; k < nsalidas && sameClass; k++)
                            if (outputs[k] != outputs2[k]) sameClass = false;
                          if (sameClass) {
                            if (tipo != Attribute.NOMINAL && !inst2.getInputMissingValues(attr)) {
                              timesSeen[attr].AddElement(
                                  new String(String.valueOf(inst2.getInputRealValues(attr))));

                            } else {
                              if (!inst2.getInputMissingValues(attr)) {
                                timesSeen[attr].AddElement(inst2.getInputNominalValues(attr));
                              }
                            }
                          }
                        }
                      }
                    }
                    for (int attr = 0; attr < nvariables; attr++) {
                      if (direccion == Attribute.INPUT && inst.getInputMissingValues(attr)) {
                        timesSeen[attr].reset();
                      }
                    }
                    fin = false;
                    stepNext = false;
                    while (!fin) {
                      in2 = 0;
                      for (int attr = 0; attr < nvariables && !fin; attr++) {
                        Attribute b = Attributes.getAttribute(attr);

                        direccion = b.getDirectionAttribute();
                        tipo = b.getType();
                        if (direccion == Attribute.INPUT && inst.getInputMissingValues(in2)) {
                          if (stepNext) {
                            timesSeen[attr].iterate();
                            stepNext = false;
                          }
                          if (timesSeen[attr].outOfBounds()) {
                            stepNext = true;
                            if (attr == lastMissing) fin = true;
                            timesSeen[attr].reset();
                          }
                          if (!fin)
                            row[attr] =
                                ((ValueFreq) timesSeen[attr].getCurrent())
                                    .getValue(); // replace missing data
                        }
                        in2++;
                      }
                      if (!fin) {
                        stepNext = true;
                        file_write.write(row[0]);
                        for (int y = 1; y < nvariables; y++) {
                          file_write.write("," + row[y]);
                        }
                        file_write.write("\n");
                        // X[i].addElement(row);
                        // row = (String[])row.clone();
                      }
                    }
                  }
                }
                in++;
              } else {
                if (direccion == Attribute.OUTPUT) {
                  if (tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)) {
                    row[j] = new String(String.valueOf(inst.getOutputRealValues(out)));
                  } else {
                    if (!inst.getOutputMissingValues(out))
                      row[j] = inst.getOutputNominalValues(out);
                    else row[j] = new String("?");
                  }
                  out++;
                }
              }
            }
            if (!inst.existsAnyMissingValue()) {
              file_write.write(row[0]);
              for (int y = 1; y < nvariables; y++) {
                file_write.write("," + row[y]);
              }
              file_write.write("\n");
            }
          }
        } catch (Exception e) {
          System.out.println("Dataset exception = " + e);
          e.printStackTrace();
          System.exit(-1);
        }
        file_write.close();
      } catch (IOException e) {
        System.out.println("IO exception = " + e);
        e.printStackTrace();
        System.exit(-1);
      }
    }
  }