@Test public void testTakeFilterSkipChainAsync() { int NUM = (int) (Observable.bufferSize() * 2.1); AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<>(); incrementingIntegers(c) .observeOn(Schedulers.computation()) .skip(10000) .filter(i -> i > 11000) .take(NUM) .subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); // emit 10000 that are skipped // emit next 1000 that are filtered out // take NUM // so emitted is at least 10000+1000+NUM + extra for buffer size/threshold int expected = 10000 + 1000 + Observable.bufferSize() * 3 + Observable.bufferSize() / 2; System.out.println( "testTakeFilterSkipChain => Received: " + ts.valueCount() + " Emitted: " + c.get() + " Expected: " + expected); assertEquals(NUM, ts.valueCount()); assertTrue(c.get() < expected); }
@Test(timeout = 2000) public void testFirehoseFailsAsExpected() { AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<>(); firehose(c) .observeOn(Schedulers.computation()) .map( v -> { try { Thread.sleep(10); } catch (Exception e) { e.printStackTrace(); } return v; }) .subscribe(ts); ts.awaitTerminalEvent(); System.out.println( "testFirehoseFailsAsExpected => Received: " + ts.valueCount() + " Emitted: " + c.get()); // FIXME it is possible slow is not slow enough or the main gets delayed and thus more than one // source value is emitted. int vc = ts.valueCount(); assertTrue("10 < " + vc, vc <= 10); ts.assertError(MissingBackpressureException.class); }
@Test public void testZipAsync() { int NUM = (int) (Observable.bufferSize() * 2.1); AtomicInteger c1 = new AtomicInteger(); AtomicInteger c2 = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<>(); Observable<Integer> zipped = Observable.zip( incrementingIntegers(c1).subscribeOn(Schedulers.computation()), incrementingIntegers(c2).subscribeOn(Schedulers.computation()), (t1, t2) -> t1 + t2); zipped.take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println( "testZipAsync => Received: " + ts.valueCount() + " Emitted: " + c1.get() + " / " + c2.get()); assertEquals(NUM, ts.valueCount()); int max = Observable.bufferSize() * 5; assertTrue("" + c1.get() + " >= " + max, c1.get() < max); assertTrue("" + c2.get() + " >= " + max, c2.get() < max); }
@Test public void testObserveOnWithSlowConsumer() { int NUM = (int) (Observable.bufferSize() * 0.2); AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<>(); incrementingIntegers(c) .observeOn(Schedulers.computation()) .map( i -> { try { Thread.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); } return i; }) .take(NUM) .subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println( "testObserveOnWithSlowConsumer => Received: " + ts.valueCount() + " Emitted: " + c.get()); assertEquals(NUM, ts.valueCount()); assertTrue(c.get() < Observable.bufferSize() * 2); }
@Test @Ignore // the test is non-deterministic and can't be made deterministic public void testFlatMapAsync() { int NUM = (int) (Observable.bufferSize() * 2.1); AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<>(); incrementingIntegers(c) .subscribeOn(Schedulers.computation()) .flatMap( i -> incrementingIntegers(new AtomicInteger()) .take(10) .subscribeOn(Schedulers.computation())) .take(NUM) .subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println( "testFlatMapAsync => Received: " + ts.valueCount() + " Emitted: " + c.get() + " Size: " + Observable.bufferSize()); assertEquals(NUM, ts.valueCount()); // even though we only need 10, it will request at least Observable.bufferSize(), and then as it // drains keep requesting more // and then it will be non-deterministic when the take() causes the unsubscribe as it is // scheduled on 10 different schedulers (threads) // normally this number is ~250 but can get up to ~1200 when Observable.bufferSize() == 1024 assertTrue(c.get() <= Observable.bufferSize() * 2); }
@Test public void testMergeAsyncThenObserveOn() { int NUM = (int) (Observable.bufferSize() * 4.1); AtomicInteger c1 = new AtomicInteger(); AtomicInteger c2 = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<>(); Observable<Integer> merged = Observable.merge( incrementingIntegers(c1).subscribeOn(Schedulers.computation()), incrementingIntegers(c2).subscribeOn(Schedulers.computation())); merged.observeOn(Schedulers.newThread()).take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println( "testMergeAsyncThenObserveOn => Received: " + ts.valueCount() + " Emitted: " + c1.get() + " / " + c2.get()); assertEquals(NUM, ts.valueCount()); // either one can starve the other, but neither should be capable of doing more than 5 batches // (taking 4.1) // TODO is it possible to make this deterministic rather than one possibly starving the other? // benjchristensen => In general I'd say it's not worth trying to make it so, as "fair" // algoritms generally take a performance hit // akarnokd => run this in a loop over 10k times and never saw values get as high as 7*SIZE, but // since observeOn delays the unsubscription non-deterministically, the test will remain // unreliable assertTrue(c1.get() < Observable.bufferSize() * 7); assertTrue(c2.get() < Observable.bufferSize() * 7); }
@Test(timeout = 10000) public void testOnBackpressureDropSynchronous() { for (int i = 0; i < 100; i++) { int NUM = (int) (Observable.bufferSize() * 1.1); // > 1 so that take doesn't prevent buffer overflow AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<>(); firehose(c).onBackpressureDrop().map(SLOW_PASS_THRU).take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); List<Integer> onNextEvents = ts.values(); assertEquals(NUM, onNextEvents.size()); Integer lastEvent = onNextEvents.get(NUM - 1); System.out.println( "testOnBackpressureDrop => Received: " + onNextEvents.size() + " Emitted: " + c.get() + " Last value: " + lastEvent); // it drop, so we should get some number far higher than what would have sequentially // incremented assertTrue(NUM - 1 <= lastEvent.intValue()); } }
@Test public void testMergeAsync() { int NUM = (int) (Observable.bufferSize() * 4.1); AtomicInteger c1 = new AtomicInteger(); AtomicInteger c2 = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<>(); Observable<Integer> merged = Observable.merge( incrementingIntegers(c1).subscribeOn(Schedulers.computation()), incrementingIntegers(c2).subscribeOn(Schedulers.computation())); merged.take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println( "testMergeAsync => Received: " + ts.valueCount() + " Emitted: " + c1.get() + " / " + c2.get()); assertEquals(NUM, ts.valueCount()); // either one can starve the other, but neither should be capable of doing more than 5 batches // (taking 4.1) // TODO is it possible to make this deterministic rather than one possibly starving the other? // benjchristensen => In general I'd say it's not worth trying to make it so, as "fair" // algoritms generally take a performance hit int max = Observable.bufferSize() * 7; assertTrue("" + c1.get() + " >= " + max, c1.get() < max); assertTrue("" + c2.get() + " >= " + max, c2.get() < max); }
@Test public void testCompose() { TestSubscriber<String> ts = new TestSubscriber<>(); Observable.just(1, 2, 3).compose(t1 -> t1.map(String::valueOf)).subscribe(ts); ts.assertTerminated(); ts.assertNoErrors(); ts.assertValues("1", "2", "3"); }
@Test public void testObserveOn() { int NUM = (int) (Observable.bufferSize() * 2.1); AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<>(); incrementingIntegers(c).observeOn(Schedulers.computation()).take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println("testObserveOn => Received: " + ts.valueCount() + " Emitted: " + c.get()); assertEquals(NUM, ts.valueCount()); assertTrue(c.get() < Observable.bufferSize() * 4); }
@Test public void testExtend() { final TestSubscriber<Object> subscriber = new TestSubscriber<>(); final Object value = new Object(); Observable.just(value) .to( onSubscribe -> { onSubscribe.subscribe(subscriber); subscriber.assertNoErrors(); subscriber.assertComplete(); subscriber.assertValue(value); return subscriber.values().get(0); }); }
@Test(timeout = 20000) public void testOnBackpressureDropWithAction() { for (int i = 0; i < 100; i++) { final AtomicInteger emitCount = new AtomicInteger(); final AtomicInteger dropCount = new AtomicInteger(); final AtomicInteger passCount = new AtomicInteger(); final int NUM = Observable.bufferSize() * 3; // > 1 so that take doesn't prevent buffer overflow TestSubscriber<Integer> ts = new TestSubscriber<>(); firehose(emitCount) .onBackpressureDrop(v -> dropCount.incrementAndGet()) .doOnNext(v -> passCount.incrementAndGet()) .observeOn(Schedulers.computation()) .map(SLOW_PASS_THRU) .take(NUM) .subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); List<Integer> onNextEvents = ts.values(); Integer lastEvent = onNextEvents.get(NUM - 1); System.out.println( testName.getMethodName() + " => Received: " + onNextEvents.size() + " Passed: " + passCount.get() + " Dropped: " + dropCount.get() + " Emitted: " + emitCount.get() + " Last value: " + lastEvent); assertEquals(NUM, onNextEvents.size()); // in reality, NUM < passCount assertTrue(NUM <= passCount.get()); // it drop, so we should get some number far higher than what would have sequentially // incremented assertTrue(NUM - 1 <= lastEvent.intValue()); assertTrue(0 < dropCount.get()); assertEquals(emitCount.get(), passCount.get() + dropCount.get()); } }
@Test public void testFlatMapSync() { int NUM = (int) (Observable.bufferSize() * 2.1); AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<>(); incrementingIntegers(c) .flatMap(i -> incrementingIntegers(new AtomicInteger()).take(10)) .take(NUM) .subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println("testFlatMapSync => Received: " + ts.valueCount() + " Emitted: " + c.get()); assertEquals(NUM, ts.valueCount()); // expect less than 1 buffer since the flatMap is emitting 10 each time, so it is NUM/10 that // will be taken. assertTrue(c.get() < Observable.bufferSize()); }
@Test public void testMergeAsyncThenObserveOnLoop() { for (int i = 0; i < 500; i++) { if (i % 10 == 0) { System.out.println("testMergeAsyncThenObserveOnLoop >> " + i); } // Verify there is no MissingBackpressureException int NUM = (int) (Observable.bufferSize() * 4.1); AtomicInteger c1 = new AtomicInteger(); AtomicInteger c2 = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<>(); Observable<Integer> merged = Observable.merge( incrementingIntegers(c1).subscribeOn(Schedulers.computation()), incrementingIntegers(c2).subscribeOn(Schedulers.computation())); merged.observeOn(Schedulers.io()).take(NUM).subscribe(ts); ts.awaitTerminalEvent(5, TimeUnit.SECONDS); ts.assertComplete(); ts.assertNoErrors(); System.out.println( "testMergeAsyncThenObserveOn => Received: " + ts.valueCount() + " Emitted: " + c1.get() + " / " + c2.get()); assertEquals(NUM, ts.valueCount()); } }
@Test(timeout = 10000) public void testOnBackpressureDrop() { long t = System.currentTimeMillis(); for (int i = 0; i < 100; i++) { // stop the test if we are getting close to the timeout because slow machines // may not get through 100 iterations if (System.currentTimeMillis() - t > TimeUnit.SECONDS.toMillis(9)) { break; } int NUM = (int) (Observable.bufferSize() * 1.1); // > 1 so that take doesn't prevent buffer overflow AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<>(); firehose(c) .onBackpressureDrop() .observeOn(Schedulers.computation()) .map(SLOW_PASS_THRU) .take(NUM) .subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); List<Integer> onNextEvents = ts.values(); assertEquals(NUM, onNextEvents.size()); Integer lastEvent = onNextEvents.get(NUM - 1); System.out.println( "testOnBackpressureDrop => Received: " + onNextEvents.size() + " Emitted: " + c.get() + " Last value: " + lastEvent); // it drop, so we should get some number far higher than what would have sequentially // incremented assertTrue(NUM - 1 <= lastEvent.intValue()); } }
@Test public void testSubscribeOnScheduling() { // in a loop for repeating the concurrency in this to increase chance of failure for (int i = 0; i < 100; i++) { int NUM = (int) (Observable.bufferSize() * 2.1); AtomicInteger c = new AtomicInteger(); ConcurrentLinkedQueue<Thread> threads = new ConcurrentLinkedQueue<>(); TestSubscriber<Integer> ts = new TestSubscriber<>(); // observeOn is there to make it async and need backpressure incrementingIntegers(c, threads) .subscribeOn(Schedulers.computation()) .observeOn(Schedulers.computation()) .take(NUM) .subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println( "testSubscribeOnScheduling => Received: " + ts.valueCount() + " Emitted: " + c.get()); assertEquals(NUM, ts.valueCount()); assertTrue(c.get() < Observable.bufferSize() * 4); Thread first = null; for (Thread t : threads) { System.out.println("testSubscribeOnScheduling => thread: " + t); if (first == null) { first = t; } else { if (!first.equals(t)) { fail("Expected to see the same thread"); } } } System.out.println( "testSubscribeOnScheduling => Number of batch requests seen: " + threads.size()); assertTrue(threads.size() > 1); System.out.println( "-------------------------------------------------------------------------------------------"); } }
@Test(timeout = 2000) public void testOnBackpressureBuffer() { int NUM = (int) (Observable.bufferSize() * 1.1); // > 1 so that take doesn't prevent buffer overflow AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<>(); firehose(c) .takeWhile(t1 -> t1 < 100000) .onBackpressureBuffer() .observeOn(Schedulers.computation()) .map(SLOW_PASS_THRU) .take(NUM) .subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println( "testOnBackpressureBuffer => Received: " + ts.valueCount() + " Emitted: " + c.get()); assertEquals(NUM, ts.valueCount()); // it buffers, so we should get the right value sequentially assertEquals(NUM - 1, ts.values().get(NUM - 1).intValue()); }
@Test public void testAmbWith() { TestSubscriber<Integer> ts = new TestSubscriber<>(); Observable.just(1).ambWith(Observable.just(2)).subscribe(ts); ts.assertValue(1); }
@Test public void testConcatWith() { TestSubscriber<Integer> ts = new TestSubscriber<>(); Observable.just(1).concatWith(Observable.just(2)).subscribe(ts); ts.assertValues(1, 2); }