コード例 #1
0
ファイル: LiftOverVcf.java プロジェクト: picsaver/gatk
  @Override
  protected Object doWork() {
    IOUtil.assertFileIsReadable(INPUT);
    IOUtil.assertFileIsReadable(REFERENCE_SEQUENCE);
    IOUtil.assertFileIsReadable(CHAIN);
    IOUtil.assertFileIsWritable(OUTPUT);
    IOUtil.assertFileIsWritable(REJECT);

    ////////////////////////////////////////////////////////////////////////
    // Setup the inputs
    ////////////////////////////////////////////////////////////////////////
    final LiftOver liftOver = new LiftOver(CHAIN);
    final VCFFileReader in = new VCFFileReader(INPUT, false);

    logger.info("Loading up the target reference genome.");
    final ReferenceSequenceFileWalker walker = new ReferenceSequenceFileWalker(REFERENCE_SEQUENCE);
    final Map<String, byte[]> refSeqs = new HashMap<>();
    for (final SAMSequenceRecord rec : walker.getSequenceDictionary().getSequences()) {
      refSeqs.put(rec.getSequenceName(), walker.get(rec.getSequenceIndex()).getBases());
    }
    CloserUtil.close(walker);

    ////////////////////////////////////////////////////////////////////////
    // Setup the outputs
    ////////////////////////////////////////////////////////////////////////
    final VCFHeader inHeader = in.getFileHeader();
    final VCFHeader outHeader = new VCFHeader(inHeader);
    outHeader.setSequenceDictionary(walker.getSequenceDictionary());
    final VariantContextWriter out =
        new VariantContextWriterBuilder()
            .setOption(Options.INDEX_ON_THE_FLY)
            .setOutputFile(OUTPUT)
            .setReferenceDictionary(walker.getSequenceDictionary())
            .build();
    out.writeHeader(outHeader);

    final VariantContextWriter rejects =
        new VariantContextWriterBuilder()
            .setOutputFile(REJECT)
            .unsetOption(Options.INDEX_ON_THE_FLY)
            .build();
    final VCFHeader rejectHeader = new VCFHeader(in.getFileHeader());
    for (final VCFFilterHeaderLine line : FILTERS) rejectHeader.addMetaDataLine(line);
    rejects.writeHeader(rejectHeader);

    ////////////////////////////////////////////////////////////////////////
    // Read the input VCF, lift the records over and write to the sorting
    // collection.
    ////////////////////////////////////////////////////////////////////////
    long failedLiftover = 0, failedAlleleCheck = 0, total = 0;
    logger.info("Lifting variants over and sorting.");

    final SortingCollection<VariantContext> sorter =
        SortingCollection.newInstance(
            VariantContext.class,
            new VCFRecordCodec(outHeader),
            outHeader.getVCFRecordComparator(),
            MAX_RECORDS_IN_RAM,
            TMP_DIR);

    ProgressLogger progress = new ProgressLogger(logger, 1000000, "read");

    for (final VariantContext ctx : in) {
      ++total;
      final Interval source =
          new Interval(
              ctx.getContig(),
              ctx.getStart(),
              ctx.getEnd(),
              false,
              ctx.getContig() + ":" + ctx.getStart() + "-" + ctx.getEnd());
      final Interval target = liftOver.liftOver(source, 1.0);

      if (target == null) {
        rejects.add(new VariantContextBuilder(ctx).filter(FILTER_CANNOT_LIFTOVER).make());
        failedLiftover++;
      } else {
        // Fix the alleles if we went from positive to negative strand
        final List<Allele> alleles = new ArrayList<>();
        for (final Allele oldAllele : ctx.getAlleles()) {
          if (target.isPositiveStrand() || oldAllele.isSymbolic()) {
            alleles.add(oldAllele);
          } else {
            alleles.add(
                Allele.create(
                    SequenceUtil.reverseComplement(oldAllele.getBaseString()),
                    oldAllele.isReference()));
          }
        }

        // Build the new variant context
        final VariantContextBuilder builder =
            new VariantContextBuilder(
                ctx.getSource(), target.getContig(), target.getStart(), target.getEnd(), alleles);

        builder.id(ctx.getID());
        builder.attributes(ctx.getAttributes());
        builder.genotypes(ctx.getGenotypes());
        builder.filters(ctx.getFilters());
        builder.log10PError(ctx.getLog10PError());

        // Check that the reference allele still agrees with the reference sequence
        boolean mismatchesReference = false;
        for (final Allele allele : builder.getAlleles()) {
          if (allele.isReference()) {
            final byte[] ref = refSeqs.get(target.getContig());
            final String refString =
                StringUtil.bytesToString(ref, target.getStart() - 1, target.length());

            if (!refString.equalsIgnoreCase(allele.getBaseString())) {
              mismatchesReference = true;
            }

            break;
          }
        }

        if (mismatchesReference) {
          rejects.add(new VariantContextBuilder(ctx).filter(FILTER_MISMATCHING_REF_ALLELE).make());
          failedAlleleCheck++;
        } else {
          sorter.add(builder.make());
        }
      }

      progress.record(ctx.getContig(), ctx.getStart());
    }

    final NumberFormat pfmt = new DecimalFormat("0.0000%");
    final String pct = pfmt.format((failedLiftover + failedAlleleCheck) / (double) total);
    logger.info("Processed ", total, " variants.");
    logger.info(Long.toString(failedLiftover), " variants failed to liftover.");
    logger.info(
        Long.toString(failedAlleleCheck),
        " variants lifted over but had mismatching reference alleles after lift over.");
    logger.info(pct, " of variants were not successfully lifted over and written to the output.");

    rejects.close();
    in.close();

    ////////////////////////////////////////////////////////////////////////
    // Write the sorted outputs to the final output file
    ////////////////////////////////////////////////////////////////////////
    sorter.doneAdding();
    progress = new ProgressLogger(logger, 1000000, "written");
    logger.info("Writing out sorted records to final VCF.");

    for (final VariantContext ctx : sorter) {
      out.add(ctx);
      progress.record(ctx.getContig(), ctx.getStart());
    }
    out.close();
    sorter.cleanup();

    return null;
  }
コード例 #2
0
  /**
   * Main method for the program. Checks that all input files are present and readable and that the
   * output file can be written to. Then iterates through all the records accumulating metrics.
   * Finally writes metrics file
   */
  protected int doWork() {
    IOUtil.assertFileIsReadable(INPUT);
    IOUtil.assertFileIsWritable(OUTPUT);

    final SamReader reader =
        SamReaderFactory.makeDefault().referenceSequence(REFERENCE_SEQUENCE).open(INPUT);

    final Histogram<Integer> mismatchesHist = new Histogram<Integer>("Predicted", "Mismatches");
    final Histogram<Integer> totalHist = new Histogram<Integer>("Predicted", "Total_Bases");
    final Map<String, Histogram> mismatchesByTypeHist = new HashMap<String, Histogram>();
    final Map<String, Histogram> totalByTypeHist = new HashMap<String, Histogram>();

    // Set up the histograms
    byte[] bases = {'A', 'C', 'G', 'T'};
    for (final byte base : bases) {
      final Histogram<Integer> h = new Histogram<Integer>("Predicted", (char) base + ">");
      mismatchesByTypeHist.put((char) base + ">", h);
      final Histogram<Integer> h2 = new Histogram<Integer>("Predicted", ">" + (char) base);
      mismatchesByTypeHist.put(">" + (char) base, h2);
    }
    for (final byte base : bases) {
      final Histogram<Integer> h = new Histogram<Integer>("Predicted", (char) base + ">");
      totalByTypeHist.put((char) base + ">", h);
      final Histogram<Integer> h2 = new Histogram<Integer>("Predicted", ">" + (char) base);
      totalByTypeHist.put(">" + (char) base, h2);
    }

    for (final SAMRecord record : reader) {
      // Ignore these as we don't know the truth
      if (record.getReadUnmappedFlag() || record.isSecondaryOrSupplementary()) {
        continue;
      }
      final byte[] readBases = record.getReadBases();
      final byte[] readQualities = record.getBaseQualities();
      final byte[] refBases = SequenceUtil.makeReferenceFromAlignment(record, false);

      // We've seen stranger things
      if (readQualities.length != readBases.length) {
        throw new PicardException(
            "Missing Qualities ("
                + readQualities.length
                + ","
                + readBases.length
                + ") : "
                + record.getSAMString());
      }

      if (refBases.length != readBases.length) {
        throw new PicardException(
            "The read length did not match the inferred reference length, please check your MD and CIGAR.");
      }

      int cycleIndex; // zero-based
      if (record.getReadNegativeStrandFlag()) {
        cycleIndex = readBases.length - 1 + CYCLE_OFFSET;
      } else {
        cycleIndex = CYCLE_OFFSET;
      }

      for (int i = 0; i < readBases.length; i++) {
        if (-1 == CYCLE || cycleIndex == CYCLE) {
          if ('-' != refBases[i] && '0' != refBases[i]) { // not insertion and not soft-clipped
            if (!SequenceUtil.basesEqual(readBases[i], refBases[i])) { // mismatch
              mismatchesHist.increment((int) readQualities[i]);
              if (SequenceUtil.isValidBase(refBases[i])) {
                mismatchesByTypeHist
                    .get((char) refBases[i] + ">")
                    .increment((int) readQualities[i]);
              }
              if (SequenceUtil.isValidBase(readBases[i])) {
                mismatchesByTypeHist
                    .get(">" + (char) readBases[i])
                    .increment((int) readQualities[i]);
              }
            } else {
              mismatchesHist.increment(
                  (int) readQualities[i], 0); // to make sure the bin will exist
            }
            totalHist.increment((int) readQualities[i]);
            if (SequenceUtil.isValidBase(readBases[i])) {
              totalByTypeHist.get(">" + (char) readBases[i]).increment((int) readQualities[i]);
            }
            if (SequenceUtil.isValidBase(refBases[i])) {
              totalByTypeHist.get((char) refBases[i] + ">").increment((int) readQualities[i]);
            }
          }
        }
        cycleIndex += record.getReadNegativeStrandFlag() ? -1 : 1;
      }
    }
    CloserUtil.close(reader);

    final Histogram<Integer> hist = new Histogram<Integer>("Predicted", "Observed");

    double sumOfSquaresError = 0.0;

    // compute the aggregate phred values
    for (final Integer key : mismatchesHist.keySet()) {
      final double numMismatches = mismatchesHist.get(key).getValue();
      final double numBases = totalHist.get(key).getValue();
      final double phredErr = Math.log10(numMismatches / numBases) * -10.0;
      sumOfSquaresError += (0 == numMismatches) ? 0.0 : (key - phredErr) * (key - phredErr);
      hist.increment(key, phredErr);

      // make sure the bin will exist
      for (final byte base : bases) {
        mismatchesByTypeHist.get(">" + (char) base).increment(key, 0.0);
        mismatchesByTypeHist.get((char) base + ">").increment(key, 0.0);
        totalByTypeHist.get(">" + (char) base).increment(key, 0.0);
        totalByTypeHist.get((char) base + ">").increment(key, 0.0);
      }
    }

    final QualityScoreAccuracyMetrics metrics = new QualityScoreAccuracyMetrics();
    metrics.SUM_OF_SQUARE_ERROR = sumOfSquaresError;

    final MetricsFile<QualityScoreAccuracyMetrics, Integer> out = getMetricsFile();
    out.addMetric(metrics);
    out.addHistogram(hist);
    for (final byte base : bases) {
      // >base : histograms for mismatches *to* the given base
      Histogram<Integer> m = mismatchesByTypeHist.get(">" + (char) base);
      Histogram<Integer> t = totalByTypeHist.get(">" + (char) base);
      Histogram<Integer> h = new Histogram<Integer>(m.getBinLabel(), m.getValueLabel());
      for (final Integer key : m.keySet()) {
        final double numMismatches = m.get(key).getValue();
        final double numBases = t.get(key).getValue();
        final double phredErr = Math.log10(numMismatches / numBases) * -10.0;
        h.increment(key, phredErr);
      }
      out.addHistogram(h);

      // base> : histograms for mismatches *from* the given base
      m = mismatchesByTypeHist.get((char) base + ">");
      t = totalByTypeHist.get(">" + (char) base);
      h = new Histogram<Integer>(m.getBinLabel(), m.getValueLabel());
      for (final Integer key : m.keySet()) {
        final double numMismatches = m.get(key).getValue();
        final double numBases = t.get(key).getValue();
        final double phredErr = Math.log10(numMismatches / numBases) * -10.0;
        h.increment(key, phredErr);
      }
      out.addHistogram(h);
    }

    out.addHistogram(mismatchesHist);
    out.addHistogram(totalHist);
    out.write(OUTPUT);

    return 0;
  }