@Override public void map(Chunk[] chks) { final Chunk y = importance ? chk_resp(chks) : null; // Response final double[] rpred = importance ? new double[1 + _nclass] : null; // Row prediction final double[] rowdata = importance ? new double[_ncols] : null; // Pre-allocated row data final Chunk oobt = chk_oobt(chks); // Out-of-bag rows counter over all trees // Iterate over all rows for (int row = 0; row < oobt._len; row++) { final boolean wasOOBRow = ScoreBuildHistogram.isOOBRow((int) chk_nids(chks, 0).at8(row)); // For all tree (i.e., k-classes) for (int k = 0; k < _nclass; k++) { final DTree tree = _trees[k]; if (tree == null) continue; // Empty class is ignored final Chunk nids = chk_nids(chks, k); // Node-ids for this tree/class int nid = (int) nids.at8(row); // Get Node to decide from // Update only out-of-bag rows // This is out-of-bag row - but we would like to track on-the-fly prediction for the row if (wasOOBRow) { final Chunk ct = chk_tree(chks, k); // k-tree working column holding votes for given row nid = ScoreBuildHistogram.oob2Nid(nid); if (tree.node(nid) instanceof UndecidedNode) // If we bottomed out the tree nid = tree.node(nid).pid(); // Then take parent's decision int leafnid; if (tree.root() instanceof LeafNode) { leafnid = 0; } else { DecidedNode dn = tree.decided(nid); // Must have a decision point if (dn._split.col() == -1) // Unable to decide? dn = tree.decided(tree.node(nid).pid()); // Then take parent's decision leafnid = dn.ns(chks, row); // Decide down to a leafnode } // Setup Tree(i) - on the fly prediction of i-tree for row-th row // - for classification: cumulative number of votes for this row // - for regression: cumulative sum of prediction of each tree - has to be // normalized by number of trees double prediction = ((LeafNode) tree.node(leafnid)) .pred(); // Prediction for this k-class and this row if (importance) rpred[1 + k] = (float) prediction; // for both regression and classification ct.set(row, (float) (ct.atd(row) + prediction)); } // reset help column for this row and this k-class nids.set(row, 0); } /* end of k-trees iteration */ // For this tree this row is out-of-bag - i.e., a tree voted for this row if (wasOOBRow) oobt.set(row, oobt.atd(row) + 1); // track number of trees if (importance) { if (wasOOBRow && !y.isNA(row)) { if (isClassifier()) { int treePred = getPrediction(rpred, data_row(chks, row, rowdata), _threshold); int actuPred = (int) y.at8(row); if (treePred == actuPred) rightVotes++; // No miss ! } else { // regression double treePred = rpred[1]; double actuPred = y.atd(row); sse += (actuPred - treePred) * (actuPred - treePred); } allRows++; } } } }
// -------------------------------------------------------------------------- // Build the next random k-trees representing tid-th tree private void buildNextKTrees(Frame fr, int mtrys, float sample_rate, Random rand, int tid) { // We're going to build K (nclass) trees - each focused on correcting // errors for a single class. final DTree[] ktrees = new DTree[_nclass]; // Initial set of histograms. All trees; one leaf per tree (the root // leaf); all columns DHistogram hcs[][][] = new DHistogram[_nclass][1 /*just root leaf*/][_ncols]; // Adjust real bins for the top-levels int adj_nbins = Math.max(_parms._nbins_top_level, _parms._nbins); // Use for all k-trees the same seed. NOTE: this is only to make a fair // view for all k-trees final double[] _distribution = _model._output._distribution; long rseed = rand.nextLong(); // Initially setup as-if an empty-split had just happened for (int k = 0; k < _nclass; k++) { if (_distribution[k] != 0) { // Ignore missing classes // The Boolean Optimization // This optimization assumes the 2nd tree of a 2-class system is the // inverse of the first (and that the same columns were picked) if (k == 1 && _nclass == 2 && _model.binomialOpt()) continue; ktrees[k] = new DRFTree( fr, _ncols, (char) _parms._nbins, (char) _parms._nbins_cats, (char) _nclass, _parms._min_rows, mtrys, rseed); new DRFUndecidedNode( ktrees[k], -1, DHistogram.initialHist( fr, _ncols, adj_nbins, _parms._nbins_cats, hcs[k][0])); // The "root" node } } // Sample - mark the lines by putting 'OUT_OF_BAG' into nid(<klass>) vector Timer t_1 = new Timer(); Sample ss[] = new Sample[_nclass]; for (int k = 0; k < _nclass; k++) if (ktrees[k] != null) ss[k] = new Sample((DRFTree) ktrees[k], sample_rate) .dfork(0, new Frame(vec_nids(fr, k), vec_resp(fr)), _parms._build_tree_one_node); for (int k = 0; k < _nclass; k++) if (ss[k] != null) ss[k].getResult(); Log.debug("Sampling took: + " + t_1); int[] leafs = new int [_nclass]; // Define a "working set" of leaf splits, from leafs[i] to tree._len for // each tree i // ---- // One Big Loop till the ktrees are of proper depth. // Adds a layer to the trees each pass. Timer t_2 = new Timer(); int depth = 0; for (; depth < _parms._max_depth; depth++) { if (!isRunning()) return; hcs = buildLayer( fr, _parms._nbins, _parms._nbins_cats, ktrees, leafs, hcs, true, _parms._build_tree_one_node); // If we did not make any new splits, then the tree is split-to-death if (hcs == null) break; } Log.debug("Tree build took: " + t_2); // Each tree bottomed-out in a DecidedNode; go 1 more level and insert // LeafNodes to hold predictions. Timer t_3 = new Timer(); for (int k = 0; k < _nclass; k++) { DTree tree = ktrees[k]; if (tree == null) continue; int leaf = leafs[k] = tree.len(); for (int nid = 0; nid < leaf; nid++) { if (tree.node(nid) instanceof DecidedNode) { DecidedNode dn = tree.decided(nid); if (dn._split._col == -1) { // No decision here, no row should have this NID now if (nid == 0) { // Handle the trivial non-splitting tree LeafNode ln = new DRFLeafNode(tree, -1, 0); ln._pred = (float) (isClassifier() ? _model._output._priorClassDist[k] : responseMean()); } continue; } for (int i = 0; i < dn._nids.length; i++) { int cnid = dn._nids[i]; if (cnid == -1 || // Bottomed out (predictors or responses known constant) tree.node(cnid) instanceof UndecidedNode || // Or chopped off for depth (tree.node(cnid) instanceof DecidedNode && // Or not possible to split ((DecidedNode) tree.node(cnid))._split.col() == -1)) { LeafNode ln = new DRFLeafNode(tree, nid); ln._pred = (float) dn.pred(i); // Set prediction into the leaf dn._nids[i] = ln.nid(); // Mark a leaf here } } } } } // -- k-trees are done Log.debug("Nodes propagation: " + t_3); // ---- // Move rows into the final leaf rows Timer t_4 = new Timer(); CollectPreds cp = new CollectPreds(ktrees, leafs, _model.defaultThreshold()) .doAll(fr, _parms._build_tree_one_node); if (isClassifier()) asVotes(_treeMeasuresOnOOB) .append(cp.rightVotes, cp.allRows); // Track right votes over OOB rows for this tree else /* regression */ asSSE(_treeMeasuresOnOOB).append(cp.sse, cp.allRows); Log.debug("CollectPreds done: " + t_4); // Grow the model by K-trees _model._output.addKTrees(ktrees); }