/** * This is a callback to be executed before resampleSingle is executed. The bilinear interpolation * coefficients are computed here and vary with the single, active slice. The offset into the * intermediate image is also computed since this also varies with the active slice. If encoding * of transparent data has occurred in the renderer constructor, then the current slice of the * encoding table is initialized for use by resampleSingle. */ protected void beforeResampleSingle() { // compute the 0-direction index ranges and weighting factors float fMin = (m_afShear[0] * m_iSlice) + m_afOffset[0]; m_afA[0] = fMin - (float) Math.floor(fMin); m_afB[0] = 1.0f - m_afA[0]; int iMin0 = (int) Math.ceil(fMin); // compute the 0-direction index ranges and weighting factors fMin = (m_afShear[1] * m_iSlice) + m_afOffset[1]; m_afA[1] = fMin - (float) Math.floor(fMin); m_afB[1] = 1.0f - m_afA[1]; int iMin1 = (int) Math.ceil(fMin); // offset into intermediate image of rendered voxel data m_iInterOffset = iMin0 + (m_iInterBound * iMin1); if (m_bDoEncodeSkip) { m_aasSliceEncode = m_aaasVolumeEncode[m_iSlice]; } }
/** * The top level rendering call. This function calls beforeResampleAll, resampleAll, and * mapIntermediateToFinal, all virtual functions that are implemented in derived classes. * * @param iDS The number of slices to increment during the resampling phase. The value should be * one or larger. If one, all slices of the volume data are resampled. If two, only every * other slice is resampled. An input larger than one is used to allow fast rendering during * rotation of the volume data. Once the rotation terminates, a composite with input of one * should be called. */ public synchronized void composite(int iDS) { long startTime = 0, now = 0; double elapsedTime = 0d; // compute maximum component of the box direction vector float fMax = 0.0f; int i, iMax = -1; for (i = 0; i < 3; i++) { float fAbs = Math.abs(m_aafBox[2][i]); if (fAbs > fMax) { fMax = fAbs; iMax = i; } } startTime = System.currentTimeMillis(); traceInit(); // composite in the appropriate direction if (iMax == 0) { beforeResampleAll(1, 2, 0); } else if (iMax == 1) { beforeResampleAll(2, 0, 1); } else { beforeResampleAll(0, 1, 2); } resampleAll(iDS); mapIntermediateToFinal(); now = System.currentTimeMillis(); elapsedTime = (double) (now - startTime); if (elapsedTime <= 0) { elapsedTime = (double) 0.0; } Preferences.debug( "Shear elapse time = " + (double) (elapsedTime / 1000.0) + "\n"); // in seconds }
/** * Rotate the oriented bounding box of the 3D image about the specified axis with the specified * angle. * * @param transform The transform and its matrix by which to rotate the image. */ public void rotateFrameBy(Transform3D transform) { double rY, rX, rZ; double sinrX, sinrY, sinrZ, cosrX, cosrY, cosrZ; Matrix3d matrix = new Matrix3d(); transform.get(matrix); rY = -Math.asin(matrix.m02); if (Math.cos(rY) != 0) { rX = -Math.atan2(matrix.m12, matrix.m22); rZ = Math.atan2(matrix.m01, matrix.m00); } else { rX = -Math.atan2(matrix.m10, matrix.m11); rZ = 0; } cosrX = Math.cos(rX); sinrX = Math.sin(rX); cosrY = Math.cos(rY); sinrY = Math.sin(rY); cosrZ = Math.cos(rZ); sinrZ = Math.sin(rZ); matrix.m00 = cosrZ * cosrY; matrix.m01 = -sinrZ * cosrY; matrix.m02 = sinrY; matrix.m10 = (cosrZ * sinrY * sinrX) + (sinrZ * cosrX); matrix.m11 = (-sinrZ * sinrY * sinrX) + (cosrZ * cosrX); matrix.m12 = -cosrY * sinrX; matrix.m20 = (-cosrZ * sinrY * cosrX) + (sinrZ * sinrX); matrix.m21 = (sinrZ * sinrY * cosrX) + (cosrZ * sinrX); matrix.m22 = cosrY * cosrX; m_kRotate.set(matrix); m_akAxis[0] = new Vector3f(1.0f, 0.0f, 0.0f); m_akAxis[1] = new Vector3f(0.0f, 1.0f, 0.0f); m_akAxis[2] = new Vector3f(0.0f, 0.0f, 1.0f); for (int i = 0; i < 3; i++) { m_kRotate.transform(m_akAxis[i]); } orthonormalize(m_akAxis); for (int i = 0; i < 3; i++) { setAxis(i, m_akAxis[i]); } }