/** Calls the algorithm. */ protected void callAlgorithm() { try { resultImage = new ModelImage(imageA.getType(), imageA.getExtents(), (imageA.getImageName() + "_isn")); resultImage.copyFileTypeInfo(imageA); // Make algorithm isnAlgo = new PlugInAlgorithmISN(resultImage, imageA); // This is very important. Adding this object as a listener allows the algorithm to // notify this object when it has completed of failed. See algorithm performed event. // This is made possible by implementing AlgorithmedPerformed interface isnAlgo.addListener(this); createProgressBar(imageA.getImageName(), " ...", isnAlgo); // Hide dialog setVisible(false); if (isRunInSeparateThread()) { // Start the thread as a low priority because we wish to still have user interface work // fast. if (isnAlgo.startMethod(Thread.MIN_PRIORITY) == false) { MipavUtil.displayError("A thread is already running on this object"); } } else { isnAlgo.run(); } } catch (OutOfMemoryError x) { System.gc(); MipavUtil.displayError("AlgorithmAbsoluteValue: unable to allocate enough memory"); return; } }
/** Starts the program. */ public void runAlgorithm() { int i, j, k; if (srcImage == null) { displayError("Source Image is null"); finalize(); return; } if (threadStopped) { finalize(); return; } trueVOIs = srcImage.getVOIs(); nTrueVOIs = trueVOIs.size(); testVOIs = testImage.getVOIs(); nTestVOIs = testVOIs.size(); length = srcImage.getExtents()[0]; for (i = 1; i < srcImage.getNDims(); i++) { length *= srcImage.getExtents()[i]; } testLength = testImage.getExtents()[0]; for (i = 1; i < testImage.getNDims(); i++) { testLength *= testImage.getExtents()[i]; } if (length != testLength) { MipavUtil.displayError( srcImage.getImageName() + " and " + testImage.getImageName() + " are unequal in dimensions"); setCompleted(false); return; } trueMask = new short[length]; testMask = new short[length]; ViewUserInterface.getReference().setGlobalDataText(srcImage.getImageName() + " = true\n"); ViewUserInterface.getReference().setGlobalDataText(testImage.getImageName() + " = test\n"); for (i = 0; i < nTrueVOIs; i++) { if ((trueVOIs.VOIAt(i).getCurveType() == VOI.CONTOUR) || (trueVOIs.VOIAt(i).getCurveType() == VOI.POLYLINE)) { trueID = trueVOIs.VOIAt(i).getID(); for (j = 0; j < nTestVOIs; j++) { testID = testVOIs.VOIAt(j).getID(); if (trueID == testID) { for (k = 0; k < length; k++) { trueMask[k] = -1; testMask[k] = -1; } trueMask = srcImage.generateVOIMask(trueMask, i); testMask = testImage.generateVOIMask(testMask, j); absoluteTrue = 0; trueFound = 0; falseNegative = 0; falsePositive = 0; for (k = 0; k < length; k++) { if (trueMask[k] == trueID) { absoluteTrue++; if (testMask[k] == trueID) { trueFound++; } else { falseNegative++; } } // if (trueMask[k] == trueID) else { // trueMask[k] != trueID if (testMask[k] == trueID) { falsePositive++; } } // else trueMask[k] != trueID } // for (k = 0; k < length; k++) ViewUserInterface.getReference() .setGlobalDataText( "Statistics for VOIs with ID = " + String.valueOf(trueID) + "\n"); fnvf = (float) falseNegative / (float) absoluteTrue; ViewUserInterface.getReference() .setGlobalDataText( " False negative volume fraction = " + String.valueOf(fnvf) + "\n"); fpvf = (float) falsePositive / (float) absoluteTrue; ViewUserInterface.getReference() .setGlobalDataText( " False positive volume fraction = " + String.valueOf(fpvf) + "\n"); tpvf = (float) trueFound / (float) absoluteTrue; ViewUserInterface.getReference() .setGlobalDataText( " True Positive volume fraction = " + String.valueOf(tpvf) + "\n\n"); } // if (trueID == testID) } // for (j = 0; j < nTestVOIs; j++) } // if ((trueVOIs.VOIAt(i).getCurveType() == VOI.CONTOUR) } // for (i = 0; i < nTrueVOIs; i++) setCompleted(true); }
/** * Once all the necessary variables are set, call the Nonlocal Means filter algorithm based on * what type of image this is and whether or not there is a separate destination image. */ protected void callAlgorithm() { String name = makeImageName(image.getImageName(), "_NonlocalMeans"); int[] destExtents; if (image.getNDims() == 2) { // source image is 2D destExtents = new int[2]; destExtents[0] = image.getExtents()[0]; // X dim destExtents[1] = image.getExtents()[1]; // Y dim } else { destExtents = new int[3]; destExtents[0] = image.getExtents()[0]; destExtents[1] = image.getExtents()[1]; destExtents[2] = image.getExtents()[2]; } if (displayLoc == NEW) { try { // Make result image of float type if (image.isColorImage()) { resultImage = new ModelImage(ModelImage.ARGB, destExtents, name); } else { resultImage = new ModelImage(ModelImage.FLOAT, destExtents, name); } // resultImage = (ModelImage)image.clone(); // resultImage.setImageName(name); // Make algorithm nlMeansFilterAlgo = new AlgorithmNonlocalMeansFilter( resultImage, image, searchWindowSide, similarityWindowSide, noiseStandardDeviation, degreeOfFiltering, doRician, image25D); // This is very important. Adding this object as a listener allows the algorithm to // notify this object when it has completed of failed. See algorithm performed event. // This is made possible by implementing AlgorithmedPerformed interface nlMeansFilterAlgo.addListener(this); createProgressBar(image.getImageName(), nlMeansFilterAlgo); // Hide dialog setVisible(false); if (isRunInSeparateThread()) { // Start the thread as a low priority because we wish to still have user interface work // fast if (nlMeansFilterAlgo.startMethod(Thread.MIN_PRIORITY) == false) { MipavUtil.displayError("A thread is already running on this object"); } } else { nlMeansFilterAlgo.run(); } } catch (OutOfMemoryError x) { MipavUtil.displayError("Dialog Nonlocal Means Filter: unable to allocate enough memory"); if (resultImage != null) { resultImage.disposeLocal(); // Clean up memory of result image resultImage = null; } return; } } else { try { // No need to make new image space because the user has choosen to replace the source image // Make the algorithm class nlMeansFilterAlgo = new AlgorithmNonlocalMeansFilter( null, image, searchWindowSide, similarityWindowSide, noiseStandardDeviation, degreeOfFiltering, doRician, image25D); // This is very important. Adding this object as a listener allows the algorithm to // notify this object when it has completed of failed. See algorithm performed event. // This is made possible by implementing AlgorithmedPerformed interface nlMeansFilterAlgo.addListener(this); createProgressBar(image.getImageName(), nlMeansFilterAlgo); // Hide the dialog since the algorithm is about to run. setVisible(false); // These next lines set the titles in all frames where the source image is displayed to // "locked - " image name so as to indicate that the image is now read/write locked! // The image frames are disabled and then unregisted from the userinterface until the // algorithm has completed. Vector<ViewImageUpdateInterface> imageFrames = image.getImageFrameVector(); titles = new String[imageFrames.size()]; for (int i = 0; i < imageFrames.size(); i++) { titles[i] = ((Frame) (imageFrames.elementAt(i))).getTitle(); ((Frame) (imageFrames.elementAt(i))).setTitle("Locked: " + titles[i]); ((Frame) (imageFrames.elementAt(i))).setEnabled(false); userInterface.unregisterFrame((Frame) (imageFrames.elementAt(i))); } if (isRunInSeparateThread()) { // Start the thread as a low priority because we wish to still have user interface work // fast if (nlMeansFilterAlgo.startMethod(Thread.MIN_PRIORITY) == false) { MipavUtil.displayError("A thread is already running on this object"); } } else { nlMeansFilterAlgo.run(); } } catch (OutOfMemoryError x) { MipavUtil.displayError("Dialog Nonlocal Means Filter: unable to allocate enough memory"); return; } } }
/** * Working ... This function is never used. It doesn't modify any parameters or data members and * returns void. * * @param image DOCUMENT ME! * @param doColor DOCUMENT ME! */ public void calculatePrincipleAxis(ModelImage image, boolean doColor) { int x, y, z; int n = 0; Matrix3f mat2 = new Matrix3f(); // Row,Col Matrix3f meanProduct = new Matrix3f(); Vector3f mean = new Vector3f(); // Column vector double voxVal = 0; double total = 0; double tot = 0; // Moments first and second order double mX = 0, mY = 0, mZ = 0, mXX = 0, mXY = 0, mXZ = 0, mYY = 0, mYZ = 0, mZZ = 0; float min = (float) image.getMin(); int xEnd = image.getExtents()[0]; int yEnd = image.getExtents()[1]; int zEnd = image.getExtents()[2]; int nLim = (int) Math.sqrt((double) xEnd * yEnd * zEnd); if (nLim < 1000) { nLim = 1000; } for (z = 0; z < zEnd; z++) { for (y = 0; y < yEnd; y++) { for (x = 0; x < xEnd; x++) { if (doColor) { voxVal = (double) (image.getFloatC(x, y, z, 1) + image.getFloatC(x, y, z, 2) + image.getFloatC(x, y, z, 3)); } else { voxVal = (double) (image.getFloat(x, y, z) - min); } mX += voxVal * x; mY += voxVal * y; mZ += voxVal * z; mXX += voxVal * x * x; mXY += voxVal * x * y; mXZ += voxVal * x * z; mYY += voxVal * y * y; mYZ += voxVal * y * z; mZZ += voxVal * z * z; tot += voxVal; n++; if (n > nLim) { // Lets not over run the buffers during summation n = 0; total += tot; mat2.M00 = (float) (mat2.M00 + mXX); mat2.M01 = (float) (mat2.M01 + mXY); mat2.M02 = (float) (mat2.M02 + mXZ); mat2.M11 = (float) (mat2.M11 + mYY); mat2.M12 = (float) (mat2.M12 + mYZ); mat2.M22 = (float) (mat2.M22 + mZZ); mean.X = (float) (mean.X + mX); mean.Y = (float) (mean.Y + mY); mean.Z = (float) (mean.Z + mZ); tot = 0; mX = 0; mY = 0; mZ = 0; mXX = 0; mXY = 0; mXZ = 0; mYY = 0; mYZ = 0; mZZ = 0; } } } } total += tot; if (Math.abs(total) < 1e-5) { total = 1.0f; } mat2.M00 = (float) ((mat2.M00 + mXX) / total); mat2.M01 = (float) ((mat2.M01 + mXY) / total); mat2.M02 = (float) ((mat2.M02 + mXZ) / total); mat2.M11 = (float) ((mat2.M11 + mYY) / total); mat2.M12 = (float) ((mat2.M12 + mYZ) / total); mat2.M22 = (float) ((mat2.M22 + mZZ) / total); mean.X = (float) ((mean.X + mX) / total); mean.Y = (float) ((mean.Y + mY) / total); mean.Z = (float) ((mean.Z + mZ) / total); // Now make it central (taking off the Center of Mass) meanProduct.MakeTensorProduct(mean, mean); mat2.M00 -= meanProduct.M00; mat2.M01 -= meanProduct.M01; mat2.M02 -= meanProduct.M02; mat2.M10 -= meanProduct.M10; mat2.M11 -= meanProduct.M11; mat2.M12 -= meanProduct.M12; mat2.M20 -= meanProduct.M20; mat2.M21 -= meanProduct.M21; mat2.M22 -= meanProduct.M22; }
/** * Generates a zero crossing mask for a 2D function. Sets a ModelImage to 255 if a zero crossing * is detected. * * @param slice the slice of the volume which we are working on (0 if from 2D image) * @param buffer array in which to find zero crossing * @param detectionType the type of zero crossing detection to perform */ public void genZeroXMask(int slice, float[] buffer, int detectionType) { float x0, x1, x2, x3; int i0, i1, i2, i3; int i, j; int indexY; int length; int xDim = srcImage.getExtents()[0]; int yDim = srcImage.getExtents()[1]; length = xDim * yDim; int xxDim = xDim - 1; int yyDim = yDim - 1; float level = 0; int offset = slice * length; for (j = 0; j < yyDim; j++) { indexY = j * xDim; for (i = 0; i < xxDim; i++) { i0 = indexY + i; if (detectionType == MARCHING_SQUARES) { i1 = i0 + 1; i2 = i0 + xDim; i3 = i0 + 1 + xDim; x0 = buffer[i0]; x1 = buffer[i1]; x2 = buffer[i2]; x3 = buffer[i3]; if ((x0 >= level) && (x1 >= level) && (x2 >= level) && (x3 >= level)) { // case 0 - no edge } else if ((x0 >= level) && (x1 >= level) && (x2 < level) && (x3 >= level)) { // case 1 - edge in the lower left zXMask.set(offset + i2, 255); } else if ((x0 >= level) && (x1 >= level) && (x2 >= level) && (x3 < level)) { // case 2 - edge in the lower right zXMask.set(offset + i3, 255); } else if ((x0 >= level) && (x1 >= level) && (x2 < level) && (x3 < level)) { // case 3 - edge horizontally zXMask.set(offset + i2, 255); zXMask.set(offset + i3, 255); } else if ((x0 >= level) && (x1 < level) && (x2 >= level) && (x3 >= level)) { // case 4 - edge in the upper right zXMask.set(offset + i1, 255); } else if ((x0 >= level) && (x1 < level) && (x2 < level) && (x3 >= level)) { // case 5 - ambiguous case; either edge in upper right and lower left or // edge that goes from the upper right to the lower left zXMask.set(offset + i1, 255); zXMask.set(offset + i2, 255); } else if ((x0 >= level) && (x1 < level) && (x2 >= level) && (x3 < level)) { // case 6 - edge going vertically along the right zXMask.set(offset + i1, 255); zXMask.set(offset + i3, 255); } else if ((x0 >= level) && (x1 < level) && (x2 < level) && (x3 < level)) { // case 7 - edge in the upper left zXMask.set(offset + i0, 255); } else if ((x0 < level) && (x1 >= level) && (x2 >= level) && (x3 >= level)) { // case 8 - edge in the upper left zXMask.set(offset + i0, 255); } else if ((x0 < level) && (x1 >= level) && (x2 < level) && (x3 >= level)) { // case 9 - edge going vertically along the left zXMask.set(offset + i0, 255); zXMask.set(offset + i2, 255); } else if ((x0 < level) && (x1 >= level) && (x2 >= level) && (x3 < level)) { // case 10 - ambiguous case; either edge in upper left and lower right or // edge that goes from the upper left to the lower right zXMask.set(offset + i0, 255); zXMask.set(offset + i3, 255); } else if ((x0 < level) && (x1 >= level) && (x2 < level) && (x3 < level)) { // case 11 - edge in the upper right zXMask.set(offset + i1, 255); } else if ((x0 < level) && (x1 < level) && (x2 >= level) && (x3 >= level)) { // case 12 - edge going horizontally along the top zXMask.set(offset + i0, 255); zXMask.set(offset + i1, 255); } else if ((x0 < level) && (x1 < level) && (x2 < level) && (x3 >= level)) { // case 13 - edge in the lower right zXMask.set(offset + i3, 255); } else if ((x0 < level) && (x1 < level) && (x2 >= level) && (x3 < level)) { // case 14 - edge in the lower left zXMask.set(offset + i2, 255); } else if ((x0 < level) && (x1 < level) && (x2 < level) && (x3 < level)) { // case 15 - no edge } } else if (detectionType == NEGATIVE_EDGES) { if (buffer[i0] <= 1) { zXMask.set(offset + i0, 255); } } else if (detectionType == OLD_DETECTION) { i1 = i0 + 1; i2 = i0 + xDim; i3 = i0 + 1 + xDim; x0 = buffer[i0]; x1 = buffer[i1]; x2 = buffer[i2]; x3 = buffer[i3]; if ((x0 > level) && (x1 > level) && (x2 > level) && (x3 > level)) { zXMask.set(offset + i0, 0); } else if ((x0 < level) && (x1 < level) && (x2 < level) && (x3 < level)) { zXMask.set(offset + i0, 0); } else { zXMask.set(offset + i0, 255); } } } } FileInfoBase[] fileInfo = zXMask.getFileInfo(); fileInfo[slice].setModality(srcImage.getFileInfo()[slice].getModality()); fileInfo[slice].setFileDirectory(srcImage.getFileInfo()[slice].getFileDirectory()); fileInfo[slice].setEndianess(srcImage.getFileInfo()[slice].getEndianess()); fileInfo[slice].setUnitsOfMeasure(srcImage.getFileInfo()[slice].getUnitsOfMeasure()); fileInfo[slice].setResolutions(srcImage.getFileInfo()[slice].getResolutions()); fileInfo[slice].setExtents(zXMask.getExtents()); fileInfo[slice].setMax(255); fileInfo[slice].setMin(0); fileInfo[slice].setPixelPadValue(srcImage.getFileInfo()[slice].getPixelPadValue()); fileInfo[slice].setPhotometric(srcImage.getFileInfo()[slice].getPhotometric()); }
/** * Use the GUI results to set up the variables needed to run the algorithm. * * @return <code>true</code> if parameters set successfully, <code>false</code> otherwise. */ private boolean setVariables() { String tmpStr; int i; int totLength = image.getExtents()[0]; for (i = 1; i < image.getNDims(); i++) { totLength *= image.getExtents()[i]; } tmpStr = greenMergingText.getText(); mergingDistance = Float.parseFloat(tmpStr); if (mergingDistance < 0.0f) { MipavUtil.displayError("Merging distance cannot be less than 0"); greenMergingText.requestFocus(); greenMergingText.selectAll(); return false; } tmpStr = redMinText.getText(); redMin = Integer.parseInt(tmpStr); if (redMin < 1) { MipavUtil.displayError("red minimum must be at least 1"); redMinText.requestFocus(); redMinText.selectAll(); return false; } else if (redMin > totLength) { MipavUtil.displayError("red minimum must not exceed " + totLength); redMinText.requestFocus(); redMinText.selectAll(); return false; } tmpStr = redFractionText.getText(); redFraction = Float.parseFloat(tmpStr); if (redFraction <= 0.0f) { MipavUtil.displayError("red fraction must be greater than zero"); redFractionText.requestFocus(); redFractionText.selectAll(); return false; } else if (redFraction > 1.0f) { MipavUtil.displayError("red fraction must not exceed one"); redFractionText.requestFocus(); redFractionText.selectAll(); return false; } tmpStr = greenMinText.getText(); greenMin = Integer.parseInt(tmpStr); if (greenMin < 1) { MipavUtil.displayError("green minimum must be at least 1"); greenMinText.requestFocus(); greenMinText.selectAll(); return false; } else if (greenMin > totLength) { MipavUtil.displayError("green minimum must not exceed " + totLength); greenMinText.requestFocus(); greenMinText.selectAll(); return false; } tmpStr = greenFractionText.getText(); greenFraction = Float.parseFloat(tmpStr); if (greenFraction <= 0.0f) { MipavUtil.displayError("green fraction must be greater than zero"); greenFractionText.requestFocus(); greenFractionText.selectAll(); return false; } else if (greenFraction > 1.0f) { MipavUtil.displayError("green fraction must not exceed one"); greenFractionText.requestFocus(); greenFractionText.selectAll(); return false; } tmpStr = blueMinText.getText(); blueMin = Integer.parseInt(tmpStr); if (blueMin <= 0) { MipavUtil.displayError("Number of blue pixels must be greater than 0"); blueMinText.requestFocus(); blueMinText.selectAll(); return false; } else if (blueMin > totLength) { MipavUtil.displayError("blue minimum must not exceed " + totLength); blueMinText.requestFocus(); blueMinText.selectAll(); return false; } if (oneButton.isSelected()) { greenRegionNumber = 1; } else if (twoButton.isSelected()) { greenRegionNumber = 2; } else if (threeButton.isSelected()) { greenRegionNumber = 3; } else { greenRegionNumber = 4; } twoGreenLevels = twoBox.isSelected(); tmpStr = blueValueText.getText(); blueBoundaryFraction = Float.parseFloat(tmpStr); if (blueBoundaryFraction < 0.0f) { MipavUtil.displayError("Blue boundary fraction cannot be less than 0.0"); blueValueText.requestFocus(); blueValueText.selectAll(); return false; } else if (blueBoundaryFraction > 1.0f) { MipavUtil.displayError("Blue boundary value cannot be greater than 1.0"); blueValueText.requestFocus(); blueValueText.selectAll(); return false; } blueSmooth = blueSmoothBox.isSelected(); tmpStr = interpolationText.getText(); interpolationDivisor = Float.parseFloat(tmpStr); if (interpolationDivisor <= 1.0f) { MipavUtil.displayError("Interpolation divisor must be greater than 1"); interpolationText.requestFocus(); interpolationText.selectAll(); return false; } return true; } // end setVariables()
/** cat. */ private void cat3D_4D_4D() { int length; int xDim, yDim; float[] buffer; int cFactor = 1; int i, j; float[] resols = new float[3]; float[] origins = new float[3]; FileInfoBase[] fileInfo = null; FileInfoDicom[] fileInfoDicom = null; int srcALength, srcBLength; try { fireProgressStateChanged(srcImage1.getImageName(), "Concatenating images ..."); resols = new float[4]; origins = new float[4]; xDim = srcImage1.getExtents()[0]; yDim = srcImage1.getExtents()[1]; if (srcImage1.isColorImage()) { cFactor = 4; } length = cFactor * xDim * yDim; buffer = new float[length]; int nImages; if (srcImage1.getNDims() > srcImage2.getNDims()) { nImages = (srcImage1.getExtents()[2] * srcImage1.getExtents()[3]) + srcImage2.getExtents()[2]; for (i = 0; (i < (srcImage1.getExtents()[2] * srcImage1.getExtents()[3])) && !threadStopped; i++) { fireProgressStateChanged(Math.round((float) (i) / (nImages - 1) * 100)); srcImage1.exportData(i * length, length, buffer); destImage.importData(i * length, buffer, false); } if (threadStopped) { buffer = null; finalize(); return; } for (j = 0; (j < srcImage2.getExtents()[2]) && !threadStopped; j++) { fireProgressStateChanged(Math.round((float) (i + j) / (nImages - 1) * 100)); srcImage2.exportData(j * length, length, buffer); destImage.importData((i + j) * length, buffer, false); } if (threadStopped) { buffer = null; finalize(); return; } destImage.calcMinMax(); } else { nImages = (srcImage2.getExtents()[2] * srcImage2.getExtents()[3]) + srcImage1.getExtents()[2]; for (j = 0; (j < srcImage1.getExtents()[2]) && !threadStopped; j++) { fireProgressStateChanged(Math.round((float) (j) / (nImages - 1) * 100)); srcImage1.exportData(j * length, length, buffer); destImage.importData(j * length, buffer, false); } if (threadStopped) { buffer = null; finalize(); return; } for (i = 0; (i < (srcImage2.getExtents()[2] * srcImage2.getExtents()[3])) && !threadStopped; i++) { fireProgressStateChanged(Math.round((float) (i + j) / (nImages - 1) * 100)); srcImage2.exportData(i * buffer.length, length, buffer); destImage.importData((i + j) * buffer.length, buffer, false); } if (threadStopped) { buffer = null; finalize(); return; } destImage.calcMinMax(); } } catch (IOException error) { buffer = null; destImage.disposeLocal(); // Clean up memory of result image destImage = null; errorCleanUp("Algorithm Concat. Images: Image(s) locked", true); return; } catch (OutOfMemoryError e) { buffer = null; destImage.disposeLocal(); // Clean up memory of result image destImage = null; errorCleanUp("Algorithm Concat. Images: Out of memory", true); return; } resols[0] = srcImage1.getFileInfo()[0].getResolutions()[0]; resols[1] = srcImage1.getFileInfo()[0].getResolutions()[1]; resols[2] = srcImage1.getFileInfo()[0].getResolutions()[2]; resols[3] = srcImage1.getFileInfo()[0].getResolutions()[3]; origins[0] = srcImage1.getFileInfo()[0].getOrigin()[0]; origins[1] = srcImage1.getFileInfo()[0].getOrigin()[1]; origins[2] = srcImage1.getFileInfo()[0].getOrigin()[2]; origins[3] = srcImage1.getFileInfo()[0].getOrigin()[3]; if ((srcImage1.getFileInfo()[0] instanceof FileInfoDicom) && (srcImage2.getFileInfo()[0] instanceof FileInfoDicom)) { fileInfoDicom = new FileInfoDicom[destImage.getExtents()[2] * destImage.getExtents()[3]]; if (srcImage1.getNDims() > srcImage2.getNDims()) { srcALength = srcImage1.getExtents()[2] * srcImage1.getExtents()[3]; for (i = 0; (i < srcALength) && !threadStopped; i++) { fileInfoDicom[i] = (FileInfoDicom) (((FileInfoDicom) srcImage1.getFileInfo()[i]).clone()); fileInfoDicom[i].setOrigin(origins); } for (i = 0; (i < srcImage2.getExtents()[2]) && !threadStopped; i++) { fileInfoDicom[srcALength + i] = (FileInfoDicom) (((FileInfoDicom) srcImage2.getFileInfo()[i]).clone()); fileInfoDicom[srcALength + i].setOrigin(origins); } } else { srcBLength = srcImage2.getExtents()[2] * srcImage2.getExtents()[3]; for (i = 0; (i < srcImage1.getExtents()[2]) && !threadStopped; i++) { fileInfoDicom[i] = (FileInfoDicom) (((FileInfoDicom) srcImage1.getFileInfo()[i]).clone()); fileInfoDicom[i].setOrigin(origins); } for (i = 0; (i < srcBLength) && !threadStopped; i++) { fileInfoDicom[srcImage1.getExtents()[2] + i] = (FileInfoDicom) (((FileInfoDicom) srcImage2.getFileInfo()[i]).clone()); fileInfoDicom[srcImage1.getExtents()[2] + i].setOrigin(origins); } } destImage.setFileInfo(fileInfoDicom); } else { fileInfo = destImage.getFileInfo(); for (i = 0; (i < (destImage.getExtents()[2] * destImage.getExtents()[3])) && !threadStopped; i++) { fileInfo[i].setModality(srcImage1.getFileInfo()[0].getModality()); fileInfo[i].setFileDirectory(srcImage1.getFileInfo()[0].getFileDirectory()); fileInfo[i].setEndianess(srcImage1.getFileInfo()[0].getEndianess()); fileInfo[i].setUnitsOfMeasure(srcImage1.getFileInfo()[0].getUnitsOfMeasure()); fileInfo[i].setResolutions(resols); fileInfo[i].setExtents(destImage.getExtents()); fileInfo[i].setMax(destImage.getMax()); fileInfo[i].setMin(destImage.getMin()); fileInfo[i].setImageOrientation(srcImage1.getImageOrientation()); fileInfo[i].setPixelPadValue(srcImage1.getFileInfo()[0].getPixelPadValue()); fileInfo[i].setPhotometric(srcImage1.getFileInfo()[0].getPhotometric()); fileInfo[i].setAxisOrientation(srcImage1.getAxisOrientation()); } if (srcImage1.getFileInfo()[0] instanceof FileInfoImageXML) { if (srcImage1.getNDims() > srcImage2.getNDims()) { srcALength = srcImage1.getExtents()[2] * srcImage1.getExtents()[3]; for (i = 0; (i < srcALength) && !threadStopped; i++) { if (((FileInfoImageXML) srcImage1.getFileInfo()[i]).getPSetHashtable() != null) { ((FileInfoImageXML) fileInfo[i]) .setPSetHashtable( ((FileInfoImageXML) srcImage1.getFileInfo()[i]).getPSetHashtable()); } } } else { for (i = 0; (i < srcImage1.getExtents()[2]) && !threadStopped; i++) { if (((FileInfoImageXML) srcImage1.getFileInfo()[i]).getPSetHashtable() != null) { ((FileInfoImageXML) fileInfo[i]) .setPSetHashtable( ((FileInfoImageXML) srcImage1.getFileInfo()[i]).getPSetHashtable()); } } } } if (srcImage2.getFileInfo()[0] instanceof FileInfoImageXML) { if (srcImage1.getNDims() > srcImage2.getNDims()) { srcALength = srcImage1.getExtents()[2] * srcImage1.getExtents()[3]; for (i = 0; (i < srcImage2.getExtents()[2]) && !threadStopped; i++) { if (((FileInfoImageXML) srcImage2.getFileInfo()[i]).getPSetHashtable() != null) { ((FileInfoImageXML) fileInfo[srcALength + i]) .setPSetHashtable( ((FileInfoImageXML) srcImage2.getFileInfo()[i]).getPSetHashtable()); } } } else { srcBLength = srcImage2.getExtents()[2] * srcImage2.getExtents()[3]; for (i = 0; (i < srcBLength) && !threadStopped; i++) { if (((FileInfoImageXML) srcImage2.getFileInfo()[i]).getPSetHashtable() != null) { ((FileInfoImageXML) fileInfo[srcImage1.getExtents()[2] + i]) .setPSetHashtable( ((FileInfoImageXML) srcImage2.getFileInfo()[i]).getPSetHashtable()); } } } } } if (threadStopped) { buffer = null; finalize(); return; } setCompleted(true); fileInfo = null; fileInfoDicom = null; }
/** * This function produces a new image that has been concatenated. Two 2D-images become one 3D * image. */ private void cat2D_2D_3D() { int length; int xDim, yDim; int i; float[] buffer; int cFactor = 1; float[] resols = new float[3]; FileInfoBase[] fileInfo = null; FileInfoDicom[] fileInfoDicom = null; try { resols = new float[3]; xDim = srcImage1.getExtents()[0]; yDim = srcImage1.getExtents()[1]; if (srcImage1.isColorImage()) { cFactor = 4; } length = cFactor * xDim * yDim; buffer = new float[length]; srcImage1.exportData(0, length, buffer); destImage.importData(0, buffer, false); srcImage2.exportData(0, length, buffer); destImage.importData(buffer.length, buffer, true); } catch (IOException error) { buffer = null; destImage.disposeLocal(); // Clean up memory of result image destImage = null; errorCleanUp("Algorithm Concat. Images: Image(s) locked", true); return; } catch (OutOfMemoryError e) { buffer = null; destImage.disposeLocal(); // Clean up memory of result image destImage = null; errorCleanUp("Algorithm Concat. Images: Out of memory", true); return; } resols[0] = srcImage1.getFileInfo()[0].getResolutions()[0]; resols[1] = srcImage1.getFileInfo()[0].getResolutions()[1]; resols[2] = 1; if ((srcImage1.getFileInfo()[0] instanceof FileInfoDicom) && (srcImage2.getFileInfo()[0] instanceof FileInfoDicom)) { fileInfoDicom = new FileInfoDicom[destImage.getExtents()[2]]; fileInfoDicom[0] = (FileInfoDicom) (((FileInfoDicom) srcImage1.getFileInfo()[0]).clone()); fileInfoDicom[1] = (FileInfoDicom) (((FileInfoDicom) srcImage2.getFileInfo()[0]).clone()); destImage.setFileInfo(fileInfoDicom); } else { fileInfo = destImage.getFileInfo(); for (i = 0; (i < destImage.getExtents()[2]) && !threadStopped; i++) { fileInfo[i].setModality(srcImage1.getFileInfo()[0].getModality()); fileInfo[i].setFileDirectory(srcImage1.getFileInfo()[0].getFileDirectory()); fileInfo[i].setEndianess(srcImage1.getFileInfo()[0].getEndianess()); fileInfo[i].setUnitsOfMeasure(srcImage1.getFileInfo()[0].getUnitsOfMeasure()); fileInfo[i].setResolutions(resols); fileInfo[i].setExtents(destImage.getExtents()); fileInfo[i].setMax(destImage.getMax()); fileInfo[i].setMin(destImage.getMin()); fileInfo[i].setImageOrientation(srcImage1.getImageOrientation()); fileInfo[i].setPixelPadValue(srcImage1.getFileInfo()[0].getPixelPadValue()); fileInfo[i].setPhotometric(srcImage1.getFileInfo()[0].getPhotometric()); fileInfo[i].setAxisOrientation(srcImage1.getAxisOrientation()); } if (srcImage1.getFileInfo()[0] instanceof FileInfoImageXML) { if (((FileInfoImageXML) srcImage1.getFileInfo()[0]).getPSetHashtable() != null) { ((FileInfoImageXML) fileInfo[0]) .setPSetHashtable(((FileInfoImageXML) srcImage1.getFileInfo()[0]).getPSetHashtable()); } } if (srcImage2.getFileInfo()[0] instanceof FileInfoImageXML) { if (((FileInfoImageXML) srcImage2.getFileInfo()[0]).getPSetHashtable() != null) { ((FileInfoImageXML) fileInfo[1]) .setPSetHashtable(((FileInfoImageXML) srcImage2.getFileInfo()[0]).getPSetHashtable()); } } } if (threadStopped) { buffer = null; finalize(); return; } setCompleted(true); fileInfo = null; fileInfoDicom = null; }
/** * Use the GUI results to set up the variables needed to run the algorithm. * * @return <code>true</code> if parameters set successfully, <code>false</code> otherwise. */ private boolean setVariables() { String tmpStr; tmpStr = textXDim.getText(); try { subXDim = Integer.parseInt(tmpStr); } catch (NumberFormatException e) { MipavUtil.displayError("New XDIM string is not a valid integer"); textXDim.requestFocus(); textXDim.selectAll(); return false; } if (subXDim < 3) { MipavUtil.displayError("New XDIM must be at least 3"); textXDim.requestFocus(); textXDim.selectAll(); return false; } else if (subXDim > image.getExtents()[0]) { MipavUtil.displayError("New XDIM cannot exceed " + image.getExtents()[0]); textXDim.requestFocus(); textXDim.selectAll(); return false; } tmpStr = textYDim.getText(); try { subYDim = Integer.parseInt(tmpStr); } catch (NumberFormatException e) { MipavUtil.displayError("New YDIM string is not a valid integer"); textYDim.requestFocus(); textYDim.selectAll(); return false; } if (subYDim < 3) { MipavUtil.displayError("New YDIM must be at least 3"); textYDim.requestFocus(); textYDim.selectAll(); return false; } else if (subYDim > image.getExtents()[1]) { MipavUtil.displayError("New YDIM cannot exceed " + image.getExtents()[1]); textYDim.requestFocus(); textYDim.selectAll(); return false; } tmpStr = textNumberImages.getText(); try { numberOfImagesInMosaic = Integer.parseInt(tmpStr); } catch (NumberFormatException e) { MipavUtil.displayError("New numberOfImagesInMosaic string is not a valid integer"); textNumberImages.requestFocus(); textNumberImages.selectAll(); return false; } if (numberOfImagesInMosaic < 1) { MipavUtil.displayError("New numberOfImagesInMosaic must be at least 1"); textNumberImages.requestFocus(); textNumberImages.selectAll(); return false; } else if (numberOfImagesInMosaic > (subXDim * subYDim)) { MipavUtil.displayError("New numberOfImagesInMosaic cannot exceed (newXDim) * (newYDim)"); textNumberImages.requestFocus(); textNumberImages.selectAll(); return false; } displayLoc = NEW; return true; }